Unlocking Drought-Induced Tree Mortality: Physiological Mechanisms to Modeling

树(集合论) 生态学 植被(病理学) 经济短缺 鉴定(生物学) 持续性 生态系统 环境资源管理 生物 环境科学 政府(语言学) 病理 哲学 数学分析 医学 语言学 数学
作者
Ximeng Li,Benye Xi,Xiuchen Wu,Brendan Choat,Jinchao Feng,Mingkai Jiang,David T. Tissue
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:13 被引量:5
标识
DOI:10.3389/fpls.2022.835921
摘要

Drought-related tree mortality has become a major concern worldwide due to its pronounced negative impacts on the functioning and sustainability of forest ecosystems. However, our ability to identify the species that are most vulnerable to drought, and to pinpoint the spatial and temporal patterns of mortality events, is still limited. Model is useful tools to capture the dynamics of vegetation at spatiotemporal scales, yet contemporary land surface models (LSMs) are often incapable of predicting the response of vegetation to environmental perturbations with sufficient accuracy, especially under stressful conditions such as drought. Significant progress has been made regarding the physiological mechanisms underpinning plant drought response in the past decade, and plant hydraulic dysfunction has emerged as a key determinant for tree death due to water shortage. The identification of pivotal physiological events and relevant plant traits may facilitate forecasting tree mortality through a mechanistic approach, with improved precision. In this review, we (1) summarize current understanding of physiological mechanisms leading to tree death, (2) describe the functionality of key hydraulic traits that are involved in the process of hydraulic dysfunction, and (3) outline their roles in improving the representation of hydraulic function in LSMs. We urge potential future research on detailed hydraulic processes under drought, pinpointing corresponding functional traits, as well as understanding traits variation across and within species, for a better representation of drought-induced tree mortality in models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WeiBao发布了新的文献求助10
1秒前
伶俐寒安完成签到,获得积分10
1秒前
515发布了新的文献求助20
1秒前
1秒前
zryyyyy发布了新的文献求助10
2秒前
希望天下0贩的0应助ramu采纳,获得10
3秒前
深情的mewmew完成签到,获得积分10
3秒前
stkp发布了新的文献求助10
5秒前
prettyboymzl完成签到,获得积分20
5秒前
z3Q应助伶俐寒安采纳,获得10
5秒前
wangzai发布了新的文献求助10
5秒前
善学以致用应助chen采纳,获得10
6秒前
Chemis锌醛完成签到,获得积分10
7秒前
小二郎应助jhui23z采纳,获得10
7秒前
烟花应助超级面包采纳,获得10
8秒前
9秒前
10秒前
10秒前
敏感的山柏完成签到,获得积分10
10秒前
Xieyh发布了新的文献求助10
10秒前
郭禹霄完成签到,获得积分10
12秒前
逃离大西北完成签到,获得积分10
12秒前
12秒前
领导范儿应助Chemis锌醛采纳,获得10
13秒前
隐形曼青应助xuuuu采纳,获得30
13秒前
诚心桐完成签到,获得积分10
14秒前
15秒前
111发布了新的文献求助10
15秒前
呼呼完成签到,获得积分20
15秒前
Stone发布了新的文献求助10
15秒前
stkp完成签到,获得积分10
15秒前
16秒前
maox1aoxin应助清秀凡阳采纳,获得30
16秒前
zhao发布了新的文献求助10
16秒前
wangzai完成签到,获得积分10
16秒前
16秒前
雪白的采白应助joyland采纳,获得10
17秒前
zryyyyy完成签到,获得积分10
17秒前
17秒前
汉堡包应助qiongqiong采纳,获得10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305528
求助须知:如何正确求助?哪些是违规求助? 2939246
关于积分的说明 8492531
捐赠科研通 2613686
什么是DOI,文献DOI怎么找? 1427569
科研通“疑难数据库(出版商)”最低求助积分说明 663114
邀请新用户注册赠送积分活动 647864