亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of essential proteins based on Local Random Walk and Adaptive Multi-View Multi-Label Learning

计算机科学 随机游动 机器学习 鉴定(生物学) 人工智能 过程(计算) 多样性(控制论) 钥匙(锁) 随机森林 数学 生物 计算机安全 植物 统计 操作系统
作者
Lei Wang,Jiaxin Peng,Linai Kuang,Yihong Tan,Zhiping Chen
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (6): 3507-3516 被引量:4
标识
DOI:10.1109/tcbb.2021.3128638
摘要

Accumulating evidences have indicated that essential proteins play vital roles in human physiological process. In recent years, although researches on prediction of essential proteins are developing rapidly, they suffer from various limitations including unsatisfactory data suitability and low accuracy of predictive results. In this manuscript, a novel method called RWAMVL was proposed to predict essential proteins based on Random Walk and Adaptive Multi-View multi-label Learning. In RWAMVL, taking into account that the inherent noise is ubiquitous in existing datasets of known protein-protein interactions (PPIs), a variety of different features including biological features of proteins and topological features of PPI networks would be obtained by adopting adaptive multi-view multi-label learning first. And then, an improved random walk method would be designed to detect essential proteins based on these different features. Finally, in order to accurately verify the predictive performance of RWAMVL, intensive experiments would be done to compare RWAMVL with multiple state-of-the-art predictive methods under different expeditionary frameworks, and comparative results illustrated that RWAMVL could achieve high prediction accuracy than all these competitive methods as a whole, which demonstrated that RWAMVL may be a potential tool for prediction of key proteins in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
kkkxzl完成签到,获得积分10
9秒前
侃侃完成签到,获得积分10
9秒前
kkkxzl发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
15秒前
有且仅有完成签到 ,获得积分10
26秒前
乐乐应助紧张的皮皮虾采纳,获得10
50秒前
WK完成签到,获得积分10
53秒前
59秒前
1分钟前
1分钟前
1分钟前
方的圆完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
紧张的皮皮虾完成签到,获得积分10
1分钟前
文静的峻熙完成签到,获得积分10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Vi完成签到 ,获得积分10
1分钟前
领导范儿应助ch采纳,获得10
1分钟前
1分钟前
1分钟前
ch发布了新的文献求助10
2分钟前
我是老大应助ceeray23采纳,获得20
2分钟前
2分钟前
Microbiota完成签到,获得积分10
2分钟前
2分钟前
ch完成签到,获得积分10
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
随性随缘随命完成签到 ,获得积分10
3分钟前
田様应助幸福萝采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Jasper应助摆渡人采纳,获得10
3分钟前
vocuong发布了新的文献求助10
3分钟前
丘比特应助科研通管家采纳,获得10
3分钟前
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976628
求助须知:如何正确求助?哪些是违规求助? 3520735
关于积分的说明 11204575
捐赠科研通 3257428
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806613