已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identification of essential proteins based on Local Random Walk and Adaptive Multi-View Multi-Label Learning

计算机科学 随机游动 机器学习 鉴定(生物学) 人工智能 过程(计算) 多样性(控制论) 钥匙(锁) 随机森林 数学 生物 计算机安全 植物 统计 操作系统
作者
Lei Wang,Jiaxin Peng,Linai Kuang,Yihong Tan,Zhiping Chen
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (6): 3507-3516 被引量:4
标识
DOI:10.1109/tcbb.2021.3128638
摘要

Accumulating evidences have indicated that essential proteins play vital roles in human physiological process. In recent years, although researches on prediction of essential proteins are developing rapidly, they suffer from various limitations including unsatisfactory data suitability and low accuracy of predictive results. In this manuscript, a novel method called RWAMVL was proposed to predict essential proteins based on Random Walk and Adaptive Multi-View multi-label Learning. In RWAMVL, taking into account that the inherent noise is ubiquitous in existing datasets of known protein-protein interactions (PPIs), a variety of different features including biological features of proteins and topological features of PPI networks would be obtained by adopting adaptive multi-view multi-label learning first. And then, an improved random walk method would be designed to detect essential proteins based on these different features. Finally, in order to accurately verify the predictive performance of RWAMVL, intensive experiments would be done to compare RWAMVL with multiple state-of-the-art predictive methods under different expeditionary frameworks, and comparative results illustrated that RWAMVL could achieve high prediction accuracy than all these competitive methods as a whole, which demonstrated that RWAMVL may be a potential tool for prediction of key proteins in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Christoph_Lee发布了新的文献求助10
2秒前
丘比特应助xuan采纳,获得10
4秒前
4秒前
故意的沛蓝完成签到,获得积分10
4秒前
5秒前
5秒前
希望天下0贩的0应助中陆采纳,获得10
7秒前
FIGHTACE发布了新的文献求助10
10秒前
YUE发布了新的文献求助10
10秒前
10秒前
10秒前
wy.he发布了新的文献求助10
11秒前
Christoph_Lee完成签到,获得积分20
13秒前
思源应助Sunny采纳,获得10
14秒前
15秒前
顺利的傲云完成签到,获得积分10
16秒前
FF完成签到 ,获得积分10
16秒前
xuan发布了新的文献求助10
16秒前
ycy小菜鸡发布了新的文献求助10
17秒前
nana完成签到,获得积分10
23秒前
ycy小菜鸡完成签到,获得积分10
25秒前
26秒前
Noob_saibot发布了新的文献求助10
27秒前
感动的又槐完成签到 ,获得积分10
30秒前
35秒前
35秒前
37秒前
FIGHTACE发布了新的文献求助10
37秒前
39秒前
FIGHTACE发布了新的文献求助10
39秒前
40秒前
在水一方应助斯巴达采纳,获得10
41秒前
火星上的摩托完成签到 ,获得积分10
41秒前
徐瑶瑶发布了新的文献求助10
42秒前
所所应助YUE采纳,获得30
43秒前
45秒前
46秒前
小菲完成签到 ,获得积分10
48秒前
子车茗应助潇洒凝天采纳,获得30
49秒前
downloadpapers应助zzzz采纳,获得10
50秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307151
求助须知:如何正确求助?哪些是违规求助? 2940941
关于积分的说明 8499619
捐赠科研通 2615154
什么是DOI,文献DOI怎么找? 1428702
科研通“疑难数据库(出版商)”最低求助积分说明 663493
邀请新用户注册赠送积分活动 648355