Objective Space-Based Population Generation to Accelerate Evolutionary Algorithms for Large-Scale Many-Objective Optimization

计算机科学 进化算法 人口 比例(比率) 进化计算 数学优化 多目标优化 算法 人工智能 机器学习 数学 量子力学 物理 社会学 人口学
作者
Qi Deng,Qi Kang,Liang Zhang,MengChu Zhou,Jing An
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (2): 326-340 被引量:52
标识
DOI:10.1109/tevc.2022.3166815
摘要

The generation and updating of solutions, e.g., crossover and mutation, of many existing evolutionary algorithms directly operate on decision variables. The operators are very time consuming for large-scale and many-objective optimization problems. Different from them, this work proposes an objective space-based population generation method to obtain new individuals in the objective space and then map them to decision variable space and synthesize new solutions. It introduces three new objective vector generation methods and uses a linear mapping method to tightly connect objective space and decision one to jointly determine new-generation solutions. A loop can be formed directly between two spaces, which can generate new solutions faster and use more feedback information in the objective space. In order to demonstrate the performance of the proposed algorithm, this work performs a series of empirical experiments involving both large-scale decision variables and many objectives. Compared with the state-of-the-art traditional and large-scale algorithms, the proposed method exceeds or at least reaches its peers' best level in overall performance while achieving great saving in execution time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
音乐发布了新的文献求助10
刚刚
英姑应助科研通管家采纳,获得10
1秒前
华仔应助沙拉采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
Owen应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得30
2秒前
FashionBoy应助科研通管家采纳,获得30
2秒前
Orange应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
香蕉觅云应助夏夏采纳,获得10
2秒前
英俊的铭应助夏夏采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
万能图书馆应助夏夏采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
科研通AI5应助夏夏采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
赘婿应助夏夏采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
cc应助夏夏采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
yun尘世应助科研通管家采纳,获得10
3秒前
仿生人完成签到,获得积分10
3秒前
CodeCraft应助yxy采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
3秒前
福娃发布了新的文献求助10
3秒前
Akim应助科研通管家采纳,获得30
3秒前
wanci应助科研通管家采纳,获得30
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762