葡萄糖氧化酶
材料科学
微流控
葡萄糖酸
药物输送
胰岛素
纳米技术
生物传感器
有机化学
化学
医学
内分泌学
作者
Nanda Rohra,Ganesh Gaikwad,Prajakta Dandekar,Ratnesh Jain
标识
DOI:10.1021/acsami.1c22153
摘要
In the current study, we report the microfluidic synthesis of a metal-organic framework (MOF) for insulin delivery based on the stimulus response of glucose. Insulin- and gold nanoparticle (AuNP)-encapsulated zeolitic imidazolate framework-8 (ZIF-8) was synthesized using a continuous-flow, microfluidic mixing system via a single-step process. Glucose oxidase mimicking the activity of AuNPs was utilized for oxidizing glucose molecules that entered the porous ZIF-8. The AuNPs oxidized glucose into gluconic acid and hydrogen peroxide inside the MOF (Ins-AuNP-ZIF-8). The resulting acidic pH led to the disruption of ZIF-8 and released insulin. Thus, the presence of glucose molecules provided a stimulus for insulin release. The bioactive MOFs were characterized for the presence of functional groups, morphology, crystallinity, size, and elemental confirmation. The presence of fluorescein-5-isothiocyanate-labeled insulin in the composite was confirmed using confocal laser scanning microscopy. The loading of insulin per unit weight of the MOF, determined by size-exclusion-high-performance liquid chromatography, was 77 and 88% in the batch and microfluidic processes, respectively. Drug release studies confirmed the response of the MOFs to glucose, which triggered insulin release. The synthesis process did not affect the characteristics and application of ZIF-8 and Ins-AuNP-ZIF-8. This study involving the facile synthesis of bioactive MOFs offers a sustainable strategy to design stimulus-responsive drug delivery systems and could be exploited for biosensing applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI