紫色红曲霉
发酵
生物
红曲霉
食品科学
转录组
酵母
生物化学
基因
基因表达
作者
Liuming Xie,Jianhua Xie,XianXiang Chen,Xin Tao,Jiayan Xie,Xiaoyi Shi,Zhibing Huang
标识
DOI:10.1016/j.foodres.2022.111700
摘要
Exopolysaccharides (EPS), metabolites of the medicinal edible fungus Monascus purpureus, have antioxidant, immunomodulatory, and anti-inflammatory effects. However, the biosynthetic mechanism of EPS from M. purpureus is still unclear, which hinders its utilization. In this study, the fermentation conditions of M. purpureus were optimized and comparative transcriptomic analysis was performed to understand the mechanisms and effects of fermentation on EPS synthesis. The optimal medium composition was 40 g/L mannose, 4 g/L yeast powder, 1 g/L MgSO4·7H2O, 0.8 g/L KH2PO4, 1.6 g/L K2HPO4·3H2O, and 2 mL/L Tween 80, and the optimal cultivation conditions were an inoculum of 7 %, culture temperature 30 °C, initial pH 6.0, and 180 rpm for 4 d. A total of 8095 unigenes were obtained, and 17 key enzymes for EPS synthesis were identified. Interestingly, 12 carbohydrate metabolism subcategories were enriched in the group with 4 days of fermentation compared to 2 days, with most of the differentially expressed genes (DEGs) being upregulated, but only nine carbohydrate metabolism subcategories were enriched with longer fermentation time, with all DEGs being downregulated. This study provides a theoretical basis for enhancing the EPS content and reveals the dynamics of EPS synthesis in M. purpureus, providing important targets for future EPS molecular modifications and gene knockdown studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI