Temporal-Spatial Analysis of the Essentiality of Hub Proteins in Protein-Protein Interaction Networks

中心性 杠杆(统计) 计算机科学 构造(python库) 网络分析 鉴定(生物学) 数据挖掘 生物网络 计算生物学 人工智能 生物 计算机网络 数学 植物 组合数学 物理 量子力学
作者
Xiangmao Meng,Wen-Kai Li,Ju Xiang,Hayat Dino Bedru,Wenkang Wang,Fang‐Xiang Wu,Min Li
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:9 (5): 3504-3514 被引量:12
标识
DOI:10.1109/tnse.2022.3185717
摘要

Hubs are generally defined as nodes with a high degree centrality, and they are important for maintaining the stability of complex networks. Previous studies have shown that hub proteins tend to be essential in protein-protein interaction (PPI) networks, providing us with a new way to analyze the essentiality of proteins. Unfortunately, most of the existing studies leverage static PPI networks that are both incomplete and noisy and ignore the temporal and spatial characteristics of PPI networks. Benefiting from the development of high-throughput technologies, abundant multi-biological datasets have been accumulated and can be used for network analysis. To reexamine the relationship between the network centrality and protein essentiality in PPI networks, in this study, we integrated PPI networks with gene expression data and subcellular localization information to construct temporal-spatial dynamic PPI networks. Based on the constructed temporal-spatial dynamic PPI networks, we introduced the maximum degree centrality (MDC) method to evaluate the essentiality of hub proteins. Our results illustrate that the integration of gene expression data or subcellular localization information can significantly reduce noise effects and improve the identification accuracy of essential proteins through the temporal-spatial analysis with disparate sources of PPI networks. Moreover, we redefined hubs and classified them into two types: temporospatial hubs and static hubs. The results show that temporospatial hub proteins are more likely to be essential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
潇潇雨歇完成签到,获得积分10
1秒前
F冯驳回了田様应助
1秒前
yaxin发布了新的文献求助10
2秒前
2秒前
吴昊东完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
4秒前
5秒前
大气晓蓝完成签到 ,获得积分10
5秒前
大个应助爱听歌笑寒采纳,获得10
5秒前
peterlu发布了新的文献求助10
5秒前
6秒前
SciGPT应助虚心的访烟采纳,获得10
6秒前
6秒前
斯文败类应助白云朵儿采纳,获得10
7秒前
7秒前
隐形曼青应助虫子采纳,获得10
7秒前
ff发布了新的文献求助10
8秒前
husaheng发布了新的文献求助30
8秒前
9秒前
lll发布了新的文献求助10
9秒前
Fang发布了新的文献求助30
10秒前
10秒前
绝尘发布了新的文献求助10
10秒前
10秒前
媛LZ应助搞怪向彤采纳,获得10
10秒前
梁菡杨发布了新的文献求助30
10秒前
丘比特应助鱼鱼色采纳,获得10
11秒前
荼蘼完成签到,获得积分10
11秒前
13秒前
整齐的小霜完成签到,获得积分10
13秒前
lacan发布了新的文献求助10
14秒前
小刘完成签到,获得积分10
14秒前
15秒前
Mztt完成签到,获得积分10
16秒前
16秒前
烟花应助min采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514705
求助须知:如何正确求助?哪些是违规求助? 3097068
关于积分的说明 9233846
捐赠科研通 2792049
什么是DOI,文献DOI怎么找? 1532249
邀请新用户注册赠送积分活动 711846
科研通“疑难数据库(出版商)”最低求助积分说明 707032