EID-GAN: Generative Adversarial Nets for Extremely Imbalanced Data Augmentation

对抗制 计算机科学 生成语法 计算机网络 人工智能
作者
Wei Li,Jinlin Chen,Jiannong Cao,Chao Ma,Jia Wang,Xiaohui Cui,Ping Chen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 3208-3218 被引量:38
标识
DOI:10.1109/tii.2022.3182781
摘要

Imbalanced data cause deep neural networks to output biased results, and it becomes more serious when facing extremely imbalanced data regarding the outliers with tiny size (the ratio of the outlier size to the image size is around 0.05%). Many data argumentation models are proposed to supplement imbalanced data to alleviate biased results. However, the existing augmentation models cannot synthesize tiny outliers, which make the generated data unavailable. In this article, we propose a new augmentation model named extremely imbalanced data augmentation generative adversarial nets (EID-GANs) to address the extremely imbalanced data augmentation problem. First, we design a new penalty function by subtracting the outliers from the cropped region of generated instance to guide the generator to learn the features of outliers. After this, we combine the output value of the penalty function with the generator loss to jointly update the generator's parameters with backpropagation. Second, we propose a new evaluation approach that adopts two outlier detectors with k -fold cross-validation to assess the availability of generated instances. We conduct extensive experiments to demonstrate the significant performance improvement of EID-GAN on two extremely imbalanced datasets, which are the industrial Piston and the Fabric datasets, and one general imbalanced dataset, i.e., the public DAGM dataset. The experimental results show that our EID-GAN outperforms the state-of-the-art (SOTA) augmentation models on different imbalanced datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助陈陈采纳,获得10
1秒前
1秒前
Kw完成签到,获得积分10
2秒前
charming关注了科研通微信公众号
3秒前
隐形曼青应助落寞丹萱采纳,获得10
3秒前
vv123456ha完成签到,获得积分10
3秒前
江皓昕发布了新的文献求助10
5秒前
6秒前
滴滴哒应助明理剑心采纳,获得10
6秒前
mmyhn发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
8秒前
9秒前
Evan发布了新的文献求助10
9秒前
hu发布了新的文献求助50
10秒前
tao完成签到 ,获得积分10
10秒前
在水一方应助略略略采纳,获得10
10秒前
卟噜完成签到,获得积分10
11秒前
我是老大应助Evan采纳,获得10
13秒前
13秒前
无情鼠标发布了新的文献求助10
13秒前
14秒前
h3m发布了新的文献求助10
14秒前
charming发布了新的文献求助10
15秒前
丰知然应助卡拉尔德采纳,获得10
15秒前
15秒前
charlins发布了新的文献求助10
16秒前
17秒前
科研通AI2S应助neil_match采纳,获得10
17秒前
科研通AI2S应助玥来玥好采纳,获得10
18秒前
花语完成签到,获得积分10
20秒前
21秒前
隐形曼青应助yyyy采纳,获得10
22秒前
情怀应助开心的饼干采纳,获得10
23秒前
wmq完成签到,获得积分20
23秒前
高大的代真完成签到,获得积分20
24秒前
共享精神应助顾钦采纳,获得10
24秒前
NexusExplorer应助neil_match采纳,获得10
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312284
求助须知:如何正确求助?哪些是违规求助? 2944917
关于积分的说明 8522096
捐赠科研通 2620692
什么是DOI,文献DOI怎么找? 1432995
科研通“疑难数据库(出版商)”最低求助积分说明 664817
邀请新用户注册赠送积分活动 650147