EID-GAN: Generative Adversarial Nets for Extremely Imbalanced Data Augmentation

对抗制 计算机科学 生成语法 计算机网络 人工智能
作者
Wei Li,Jinlin Chen,Jiannong Cao,Chao Ma,Jia Wang,Xiaohui Cui,Ping Chen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 3208-3218 被引量:38
标识
DOI:10.1109/tii.2022.3182781
摘要

Imbalanced data cause deep neural networks to output biased results, and it becomes more serious when facing extremely imbalanced data regarding the outliers with tiny size (the ratio of the outlier size to the image size is around 0.05%). Many data argumentation models are proposed to supplement imbalanced data to alleviate biased results. However, the existing augmentation models cannot synthesize tiny outliers, which make the generated data unavailable. In this article, we propose a new augmentation model named extremely imbalanced data augmentation generative adversarial nets (EID-GANs) to address the extremely imbalanced data augmentation problem. First, we design a new penalty function by subtracting the outliers from the cropped region of generated instance to guide the generator to learn the features of outliers. After this, we combine the output value of the penalty function with the generator loss to jointly update the generator's parameters with backpropagation. Second, we propose a new evaluation approach that adopts two outlier detectors with k -fold cross-validation to assess the availability of generated instances. We conduct extensive experiments to demonstrate the significant performance improvement of EID-GAN on two extremely imbalanced datasets, which are the industrial Piston and the Fabric datasets, and one general imbalanced dataset, i.e., the public DAGM dataset. The experimental results show that our EID-GAN outperforms the state-of-the-art (SOTA) augmentation models on different imbalanced datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sofia发布了新的文献求助60
1秒前
2秒前
橘子姐姐发布了新的文献求助10
3秒前
yanyan完成签到,获得积分10
4秒前
TT完成签到,获得积分10
5秒前
5秒前
了然完成签到 ,获得积分10
6秒前
jxp完成签到,获得积分10
6秒前
jojo完成签到 ,获得积分10
7秒前
7秒前
勤劳落雁完成签到 ,获得积分10
7秒前
10秒前
爆米花应助科研通管家采纳,获得30
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
田様应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
RC_Wang应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
赘婿应助Quzhengkai采纳,获得10
11秒前
sutharsons应助科研通管家采纳,获得30
11秒前
李爱国应助科研通管家采纳,获得30
12秒前
12秒前
12秒前
调研昵称发布了新的文献求助10
12秒前
CodeCraft应助清新的苑博采纳,获得10
13秒前
所所应助Chen采纳,获得10
14秒前
16秒前
16秒前
goldenfleece发布了新的文献求助10
16秒前
怕黑的钥匙完成签到 ,获得积分10
16秒前
zhangsf88完成签到,获得积分10
16秒前
科研通AI5应助科研小能手采纳,获得10
16秒前
乐乐应助热情芷荷采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808