Classification of focal liver disease in egyptian patients using ultrasound images and convolutional neural networks

卷积神经网络 人工智能 分类器(UML) 深度学习 模式识别(心理学) 计算机科学 合并(版本控制) 上下文图像分类 人工神经网络 肝病 医学 图像(数学) 胃肠病学 情报检索
作者
Rania Abd-Elghaffar,Mahmoud El-Zalabany,Hossam El-Din Moustafa,Mervat El-Seddek
出处
期刊:Indonesian Journal of Electrical Engineering and Computer Science [Institute of Advanced Engineering and Science (IAES)]
卷期号:27 (2): 793-793 被引量:2
标识
DOI:10.11591/ijeecs.v27.i2.pp793-802
摘要

Recently, <span>computer-aided diagnostic systems for various diseases have received great attention. One of the latest technologies used is deep learning architectures for analyzing and classifying medical images. In this paper, a new system that uses deep learning to classify three focal diseases in the liver besides the normal liver is proposed. A pre-trained convolutional neural network is utilized. Two types of networks are used, ResNet50 and AlexNet with fully connected networks (FCNs). After extracting the deep features using deep learning, FCNs can input images in different states of the disease, such as Normal, Hem, HCC, and Cyst. Dataset is obtained from the Egyptian Liver Research Institute. Two classifiers are utilized, the first includes two classes (Normal/Cyst, Normal/Hem, Normal/HCC, HCC/Cyst, HCC/Hem, Cyst/Hem) and the second contains four classes (Normal/Cyst/ HCC/Hem) to distinguish liver images. Using performance criteria, it has been shown that the two-category classifiers have given better results than the four-class classifier, and accordingly a hybrid classifier was suggested to merge the weighted probabilities of the classes obtained by each singular classifier. Experimental results have achieved an accuracy of 96.1% using ResNet50 which means that it can be used as an assistive diagnostic method for classification of focal liver disease.</span>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bjf555发布了新的文献求助10
1秒前
shengchang88发布了新的文献求助10
1秒前
飘逸小懒猪应助luoluo采纳,获得10
3秒前
远航发布了新的文献求助10
4秒前
4秒前
星辰大海应助陶醉的蜜蜂采纳,获得10
5秒前
ozy发布了新的文献求助10
5秒前
5秒前
小王完成签到,获得积分10
6秒前
彭于晏应助shengchang88采纳,获得80
7秒前
8秒前
KAKIN应助科研通管家采纳,获得10
8秒前
CAOHOU应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得30
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得50
8秒前
情怀应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得30
8秒前
核桃应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
Rondab应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
科研通AI2S应助徐小采纳,获得10
9秒前
小王发布了新的文献求助10
10秒前
10秒前
李爱国应助aimam采纳,获得10
11秒前
欧阳正义发布了新的文献求助30
11秒前
脑洞疼应助傅予菲采纳,获得10
12秒前
飘逸小懒猪应助zqzyyds采纳,获得10
14秒前
annzl发布了新的文献求助10
15秒前
16秒前
19秒前
Ava应助灵巧千易采纳,获得10
19秒前
念姬发布了新的文献求助10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966919
求助须知:如何正确求助?哪些是违规求助? 3512387
关于积分的说明 11162970
捐赠科研通 3247220
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432