纳米流体
磁流体
热导率
材料科学
流变学
粘度
磁场
传热
磁性纳米粒子
热的
纳米技术
纳米颗粒
热力学
复合材料
物理
量子力学
作者
Sithara Vinod,John Philip
标识
DOI:10.1016/j.cis.2022.102729
摘要
Technological advancement and miniaturization of electronic gadgets fueled intense research on nanofluids as potential candidates for cooling applications as a substitute to conventional heat transfer fluids. Among nanofluids, magnetic nanofluids, traditionally known as ferrofluids have attracted a lot of attention owing to their magnetic field tunable thermal conductivity and rheological properties due to the aggregation of the magnetic nanoparticles into chains or columns in the presence of the magnetic field. The field-induced aggregates act as low resistance pathways thereby improving thermal transport substantially. Recent studies show that ferrofluids with smaller size and narrow size distribution display significant enhancement in thermal conductivity in the presence of a magnetic field with negligible viscosity enhancement, which is ideal for effective thermal management of electronic devices, especially in miniature electronic devices. On the contrary, highly polydisperse ferrofluids containing large aggregates, show modest enhancement in thermal conductivity in the presence of a magnetic field and a huge enhancement in viscosity. The most recent studies show that magnetic field ramp rate has a profound effect on aggregation kinetics and thermal and rheological properties. The viscosity enhancement under an external stimulus impedes their practical use in electronics cooling, which warrants the need to attain a high thermal conductivity to viscosity ratio, under a modest magnetic field. Though there are several reviews on heat transfer in nanofluids and hybrid nanofluids, a comprehensive review on fundamental understanding of field-induced thermal and rheological properties in magnetic fluids is missing in the literature. This review provides a pedagogical description of the fundamental understanding of field-induced thermal and rheological properties in magnetic fluids, with the necessary background, key concepts, definitions, mechanisms, theoretical models, experimental protocols, and design of experiments. Many important case studies are presented along with the experimental design aspects. The review also provides a summary of important experimental studies with key findings, along with the key challenges and future research directions. The review is an ideal material for experimentalists and theoreticians practicing in the field of magnetic fluids, and also serves as an excellent reference for freshers who indent to begin research on this topic.
科研通智能强力驱动
Strongly Powered by AbleSci AI