计算机科学
任务(项目管理)
一般化
多任务学习
人工智能
机器学习
人工神经网络
多样性(控制论)
任务分析
代表(政治)
数学分析
数学
管理
政治
政治学
法学
经济
作者
Jing Du,Lina Yao,Xianzhi Wang,Bin Guo,Zhiwen Yu
标识
DOI:10.1145/3477495.3531781
摘要
Neural Multi-task Learning is gaining popularity as a way to learn multiple tasks jointly within a single model. While related research continues to break new ground, two major limitations still remain, including (i) poor generalization to scenarios where tasks are loosely correlated; and (ii) under-investigation on global commonality and local characteristics of tasks. Our aim is to bridge these gaps by presenting a neural multi-task learning model coined Hierarchical Task-aware Multi-headed Attention Network (HTMN). HTMN explicitly distinguishes task-specific features from task-shared features to reduce the impact caused by weak correlation between tasks. The proposed method highlights two parts: Multi-level Task-aware Experts Network that identifies task-shared global features and task-specific local features, and Hierarchical Multi-Head Attention Network that hybridizes global and local features to profile more robust and adaptive representations for each task. Afterwards, each task tower receives its hybrid task-adaptive representation to perform task-specific predictions. Extensive experiments on two real datasets show that HTMN consistently outperforms the compared methods on a variety of prediction tasks.
科研通智能强力驱动
Strongly Powered by AbleSci AI