溶酶体
荧光
休克(循环)
热冲击
化学
生物物理学
细胞生物学
热休克蛋白
生物化学
生物
医学
酶
量子力学
基因
物理
内科学
作者
Qiongqiong Wan,Suming Chen,Wen Shi,Lihong Li,Huimin Ma
标识
DOI:10.1002/anie.201405742
摘要
Abstract Heat stroke is a life‐threatening condition, featuring a high body temperature and malfunction of many organ systems. The relationship between heat shock and lysosomes is poorly understood, mainly because of the lack of a suitable research approach. Herein, by incorporating morpholine into a stable hemicyanine skeleton, we develop a new lysosome‐targeting near‐infrared ratiometric pH probe. In combination with fluorescence imaging, we show for the first time that the lysosomal pH value increases but never decreases during heat shock, which might result from lysosomal membrane permeabilization. We also demonstrate that this lysosomal pH rise is irreversible in living cells. Moreover, the probe is easy to synthesize, and shows superior overall analytical performance as compared to the existing commercial ones. This enhanced performance may enable it to be widely used in more lysosomal models of living cells and in further revealing the mechanisms underlying heat‐related pathology.
科研通智能强力驱动
Strongly Powered by AbleSci AI