奇异值分解
主成分分析
稀疏PCA
数学
矩阵范数
典型相关
稳健主成分分析
基质(化学分析)
低秩近似
稀疏矩阵
稀疏逼近
集合(抽象数据类型)
算法
矩阵分解
组合数学
应用数学
计算机科学
统计
物理
特征向量
化学
数学分析
汉克尔矩阵
计算化学
量子力学
高斯分布
程序设计语言
色谱法
作者
Daniela Witten,Robert Tibshirani,Trevor Hastie
出处
期刊:Biostatistics
[Oxford University Press]
日期:2009-04-17
卷期号:10 (3): 515-534
被引量:1471
标识
DOI:10.1093/biostatistics/kxp008
摘要
We present a penalized matrix decomposition (PMD), a new framework for computing a rank-K approximation for a matrix. We approximate the matrix X as , where dk, uk, and vk minimize the squared Frobenius norm of X, subject to penalties on uk and vk. This results in a regularized version of the singular value decomposition. Of particular interest is the use of L1-penalties on uk and vk, which yields a decomposition of X using sparse vectors. We show that when the PMD is applied using an L1-penalty on vk but not on uk, a method for sparse principal components results. In fact, this yields an efficient algorithm for the “SCoTLASS” proposal (Jolliffe and others 2003) for obtaining sparse principal components. This method is demonstrated on a publicly available gene expression data set. We also establish connections between the SCoTLASS method for sparse principal component analysis and the method of Zou and others (2006). In addition, we show that when the PMD is applied to a cross-products matrix, it results in a method for penalized canonical correlation analysis (CCA). We apply this penalized CCA method to simulated data and to a genomic data set consisting of gene expression and DNA copy number measurements on the same set of samples.
科研通智能强力驱动
Strongly Powered by AbleSci AI