已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reliability analysis of structures using artificial neural network based genetic algorithms

人工神经网络 遗传算法 可靠性(半导体) 计算机科学 选择(遗传算法) 算法 机器学习 人工智能 量子力学 物理 功率(物理)
作者
Jin Cheng,Qiusheng Li
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:197 (45-48): 3742-3750 被引量:100
标识
DOI:10.1016/j.cma.2008.02.026
摘要

A new class of artificial neural network based genetic algorithms (ANN-GA) has been developed for reliability analysis of structures. The methods involve the selection of training datasets for establishing an ANN model by the uniform design method, approximation of the limit state function by the trained ANN model and estimation of the failure probability using the genetic algorithms. By effectively integrating the uniform design method with the artificial neural network based genetic algorithms (ANN-GA), the inherent inaccuracy of the selection of the training datasets for developing an ANN model in conventional ANN-GA has been eliminated while keeping the good features of the ANN-GA. Due to a small number of training datasets required for developing an ANN model, the proposed methods are very effective, particularly when a structural response evaluation entails costly finite element analysis or when a problem has a extremely small value of failure probability. Three numerical examples involving both structural and non-structural problems illustrate the application and effectiveness of the methods developed, which indicate that the proposed methods can provide accurate and computationally efficient estimates of probability of failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fei完成签到,获得积分10
2秒前
KUZZZ完成签到,获得积分10
3秒前
园子发布了新的文献求助10
3秒前
vv完成签到 ,获得积分10
4秒前
共享精神应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
风清扬应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
玉屏风发布了新的文献求助10
7秒前
7秒前
7秒前
巧克力完成签到,获得积分10
8秒前
8秒前
13秒前
Flanker发布了新的文献求助10
13秒前
研友_85yrY8发布了新的文献求助10
13秒前
充电宝应助liuzi采纳,获得10
14秒前
14秒前
Dobby完成签到,获得积分10
15秒前
范范778完成签到 ,获得积分10
16秒前
霸气安筠发布了新的文献求助10
18秒前
19秒前
隐形曼青应助Flanker采纳,获得10
20秒前
任志政完成签到 ,获得积分10
21秒前
紫荆发布了新的文献求助30
22秒前
Jasper应助研友_85yrY8采纳,获得10
22秒前
23秒前
园子关注了科研通微信公众号
24秒前
幽默山羊发布了新的文献求助10
24秒前
半夏生姜完成签到,获得积分10
25秒前
25秒前
up完成签到,获得积分10
27秒前
冰棒比冰冰完成签到 ,获得积分10
30秒前
岛不言发布了新的文献求助10
30秒前
Mimi完成签到,获得积分10
30秒前
温柔的曼梅完成签到 ,获得积分10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956786
求助须知:如何正确求助?哪些是违规求助? 3502880
关于积分的说明 11110500
捐赠科研通 3233866
什么是DOI,文献DOI怎么找? 1787630
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802172