多元醇
六亚甲基二异氰酸酯
聚氨酯
二醇
高分子化学
化学
极限抗拉强度
材料科学
有机化学
复合材料
作者
Leila Hojabri,Xiaohua Kong,Suresh S. Narine
摘要
Abstract A novel long chain linear unsaturated terminal diisocyanate, 1,16‐diisocyanatohexadec‐8‐ene (HDEDI) was synthesized from oleic acid via Curtius rearrangement. Its chemical structure was identified by FTIR, 1 H NMR, 13 C NMR, and HRMS. This diisocyanate was used as a starting material for the preparation of entirely bio‐based polyurethanes (PUs) by reacting it with canola diol and canola polyol, respectively. The physical properties and crystalline structure of the PUs prepared from this diisocyanate were compared to their counterparts prepared from similar fatty acid‐derived diisocyanate, 1,7‐heptamethylene diisocyanate (HPMDI). The HDEDI based PUs demonstrated various different properties compared to those of HPMDI based PUs. For example, HDEDI based PUs exhibited a triclinic crystal form; whereas HPMDI based PUs exhibited a hexagonal crystal lattice. In addition, canola polyol‐HDEDI PU demonstrated a higher tensile strength at break than that of canola polyol‐HPMDI, attributed to the higher degree of hydrogen bonding associated with the former sample. Nevertheless, lower Young's modulus and higher elongation in canola polyol‐HDEDI PU were obtained because of the flexibility of the long chain introduced by the HDEDI diisocyanate. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3302–3310, 2010
科研通智能强力驱动
Strongly Powered by AbleSci AI