酰化
吲哚试验
化学
生物合成
氧化磷酸化
串联
生物碱
吲哚生物碱
酶
生物化学
有机化学
立体化学
催化作用
材料科学
复合材料
作者
Brian D. Ames,Xinyu Liu,Christopher T. Walsh
出处
期刊:Biochemistry
[American Chemical Society]
日期:2010-08-30
卷期号:49 (39): 8564-8576
被引量:84
摘要
Aspergillus fumigatus Af293 is a known producer of quinazoline natural products, including the antitumor fumiquinazolines, of which the simplest member is fumiquinazoline F (FQF) with a 6-6-6 tricyclic core derived from anthranilic acid, tryptophan, and alanine. FQF is the proposed biological precursor to fumiquinazoline A (FQA) in which the pendant indole side chain has been modified via oxidative coupling of an additional molecule of alanine, yielding a fused 6-5-5 imidazoindolone. We recently identified fungal anthranilate-activating nonribosomal peptide synthetase (NRPS) domains through bioinformatics approaches. One domain previously identified is part of the trimodular NRPS Af12080, which we predict is responsible for FQF formation. We now show that two adjacent A. fumigatus ORFs, a monomodular NRPS Af12050 and a flavoprotein Af12060, are necessary and sufficient to convert FQF to FQA. Af12060 oxidizes the 2',3'-double bond of the indole side chain of FQF, and the three-domain NRPS Af12050 activates l-Ala as the adenylate, installs it as the pantetheinyl thioester on its carrier protein domain, and acylates the oxidized indole for subsequent intramolecular cyclization to create the 6-5-5 imidazolindolone of FQA. This work provides experimental validation of the fumiquinazoline biosynthetic cluster of A. fumigatus Af293 and describes an oxidative annulation biosynthetic strategy likely shared among several classes of polycyclic fungal alkaloids.
科研通智能强力驱动
Strongly Powered by AbleSci AI