奈奎斯特-香农抽样定理
压缩传感
奈奎斯特率
采样(信号处理)
计算机科学
信号(编程语言)
过采样
抽样理论
代表(政治)
算法
数学
统计
电信
计算机视觉
带宽(计算)
样本量测定
探测器
政治
政治学
法学
程序设计语言
作者
Emmanuel J. Candès,Michael B. Wakin
标识
DOI:10.1109/msp.2007.914731
摘要
Conventional approaches to sampling signals or images follow Shannon's theorem: the sampling rate must be at least twice the maximum frequency present in the signal (Nyquist rate). In the field of data conversion, standard analog-to-digital converter (ADC) technology implements the usual quantized Shannon representation - the signal is uniformly sampled at or above the Nyquist rate. This article surveys the theory of compressive sampling, also known as compressed sensing or CS, a novel sensing/sampling paradigm that goes against the common wisdom in data acquisition. CS theory asserts that one can recover certain signals and images from far fewer samples or measurements than traditional methods use.
科研通智能强力驱动
Strongly Powered by AbleSci AI