A General Framework for Weighted Gene Co-Expression Network Analysis

聚类系数 聚类分析 邻接矩阵 阈值 表达式(计算机科学) 节点(物理) 邻接表 计算机科学 度量(数据仓库) 基因调控网络 功能(生物学) 基因 数据挖掘 数学 拓扑(电路) 基因表达 生物网络 生物 人工智能 理论计算机科学 算法 组合数学 遗传学 图形 工程类 图像(数学) 程序设计语言 结构工程
作者
Bin Zhang,Steve Horvath
出处
期刊:Statistical Applications in Genetics and Molecular Biology [De Gruyter]
卷期号:4 (1): Article17-Article17 被引量:5794
标识
DOI:10.2202/1544-6115.1128
摘要

Gene co-expression networks are increasingly used to explore the system-level functionality of genes. The network construction is conceptually straightforward: nodes represent genes and nodes are connected if the corresponding genes are significantly co-expressed across appropriately chosen tissue samples. In reality, it is tricky to define the connections between the nodes in such networks. An important question is whether it is biologically meaningful to encode gene co-expression using binary information (connected=1, unconnected=0). We describe a general framework for `soft' thresholding that assigns a connection weight to each gene pair. This leads us to define the notion of a weighted gene co-expression network. For soft thresholding we propose several adjacency functions that convert the co-expression measure to a connection weight. For determining the parameters of the adjacency function, we propose a biologically motivated criterion (referred to as the scale-free topology criterion).We generalize the following important network concepts to the case of weighted networks. First, we introduce several node connectivity measures and provide empirical evidence that they can be important for predicting the biological significance of a gene. Second, we provide theoretical and empirical evidence that the `weighted' topological overlap measure (used to define gene modules) leads to more cohesive modules than its `unweighted' counterpart. Third, we generalize the clustering coefficient to weighted networks. Unlike the unweighted clustering coefficient, the weighted clustering coefficient is not inversely related to the connectivity. We provide a model that shows how an inverse relationship between clustering coefficient and connectivity arises from hard thresholding.We apply our methods to simulated data, a cancer microarray data set, and a yeast microarray data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
wuludie应助徐老师采纳,获得30
刚刚
七田皿发布了新的文献求助10
刚刚
刘岩松发布了新的文献求助10
1秒前
1秒前
2233发布了新的文献求助10
1秒前
2秒前
月圆夜完成签到,获得积分10
2秒前
2秒前
CD56完成签到,获得积分10
2秒前
2秒前
顾矜应助科研人采纳,获得10
2秒前
2秒前
顺心夜南发布了新的文献求助20
3秒前
田様应助LSX采纳,获得10
3秒前
好好发布了新的文献求助10
3秒前
LuoJiajun发布了新的文献求助10
4秒前
汤柏钧发布了新的文献求助10
4秒前
思源应助高高飞风采纳,获得30
4秒前
4秒前
min完成签到 ,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
MBL发布了新的文献求助10
5秒前
苜蓿发布了新的文献求助10
5秒前
要减肥笑阳完成签到 ,获得积分10
6秒前
6秒前
聪明小黄发布了新的文献求助10
6秒前
7秒前
铃兰发布了新的文献求助10
7秒前
mamaise完成签到,获得积分10
8秒前
石头发布了新的文献求助10
8秒前
8秒前
抱抱是只可爱小猫完成签到,获得积分10
8秒前
暴龙战士发布了新的文献求助10
9秒前
9秒前
asdfzxcv应助NotToday采纳,获得10
9秒前
积极慕晴完成签到,获得积分10
9秒前
滴滴答答发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646180
求助须知:如何正确求助?哪些是违规求助? 4770425
关于积分的说明 15033724
捐赠科研通 4804901
什么是DOI,文献DOI怎么找? 2569318
邀请新用户注册赠送积分活动 1526307
关于科研通互助平台的介绍 1485803