A General Framework for Weighted Gene Co-Expression Network Analysis

聚类系数 聚类分析 邻接矩阵 阈值 表达式(计算机科学) 节点(物理) 邻接表 计算机科学 度量(数据仓库) 基因调控网络 功能(生物学) 基因 数据挖掘 数学 拓扑(电路) 基因表达 生物网络 生物 人工智能 理论计算机科学 算法 组合数学 遗传学 图形 工程类 图像(数学) 程序设计语言 结构工程
作者
Bin Zhang,Steve Horvath
出处
期刊:Statistical Applications in Genetics and Molecular Biology [De Gruyter]
卷期号:4 (1) 被引量:5111
标识
DOI:10.2202/1544-6115.1128
摘要

Gene co-expression networks are increasingly used to explore the system-level functionality of genes. The network construction is conceptually straightforward: nodes represent genes and nodes are connected if the corresponding genes are significantly co-expressed across appropriately chosen tissue samples. In reality, it is tricky to define the connections between the nodes in such networks. An important question is whether it is biologically meaningful to encode gene co-expression using binary information (connected=1, unconnected=0). We describe a general framework for `soft' thresholding that assigns a connection weight to each gene pair. This leads us to define the notion of a weighted gene co-expression network. For soft thresholding we propose several adjacency functions that convert the co-expression measure to a connection weight. For determining the parameters of the adjacency function, we propose a biologically motivated criterion (referred to as the scale-free topology criterion).We generalize the following important network concepts to the case of weighted networks. First, we introduce several node connectivity measures and provide empirical evidence that they can be important for predicting the biological significance of a gene. Second, we provide theoretical and empirical evidence that the `weighted' topological overlap measure (used to define gene modules) leads to more cohesive modules than its `unweighted' counterpart. Third, we generalize the clustering coefficient to weighted networks. Unlike the unweighted clustering coefficient, the weighted clustering coefficient is not inversely related to the connectivity. We provide a model that shows how an inverse relationship between clustering coefficient and connectivity arises from hard thresholding.We apply our methods to simulated data, a cancer microarray data set, and a yeast microarray data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JAMA完成签到,获得积分10
1秒前
1秒前
小杨快看呀完成签到,获得积分10
2秒前
Orange应助wangg采纳,获得10
2秒前
MRCHONG完成签到,获得积分10
2秒前
哈哈哈哈发布了新的文献求助10
2秒前
poletar完成签到,获得积分10
2秒前
柠檬发布了新的文献求助10
2秒前
沉静的夜玉完成签到,获得积分10
2秒前
gaos发布了新的文献求助10
2秒前
MADKAI发布了新的文献求助10
3秒前
搬砖美少女完成签到,获得积分10
3秒前
3秒前
风起完成签到 ,获得积分10
3秒前
fifteen应助雪123采纳,获得10
3秒前
3秒前
香蕉觅云应助开朗熊猫采纳,获得10
4秒前
吱嗷赵发布了新的文献求助10
4秒前
zxyhhh完成签到 ,获得积分10
4秒前
霸气梦菲完成签到 ,获得积分10
4秒前
CodeCraft应助hhh采纳,获得10
4秒前
Zhaorf发布了新的文献求助10
5秒前
MRCHONG发布了新的文献求助10
5秒前
5秒前
Akim应助liuchao采纳,获得10
5秒前
动听的人英完成签到 ,获得积分10
5秒前
6秒前
coconut完成签到 ,获得积分10
6秒前
6秒前
脑洞疼应助Ll采纳,获得10
6秒前
6秒前
7秒前
Anne完成签到,获得积分10
7秒前
老迟到的凝丝完成签到,获得积分10
7秒前
金鸡奖发布了新的文献求助10
7秒前
邓邓邓妮妮子完成签到,获得积分10
7秒前
哇哈哈发布了新的文献求助10
7秒前
7秒前
andyxrz发布了新的文献求助30
8秒前
酒尚温完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672