A General Framework for Weighted Gene Co-Expression Network Analysis

聚类系数 聚类分析 邻接矩阵 阈值 表达式(计算机科学) 节点(物理) 邻接表 计算机科学 度量(数据仓库) 基因调控网络 功能(生物学) 基因 数据挖掘 数学 拓扑(电路) 基因表达 生物网络 生物 人工智能 理论计算机科学 算法 组合数学 遗传学 图形 工程类 图像(数学) 程序设计语言 结构工程
作者
Bin Zhang,Steve Horvath
出处
期刊:Statistical Applications in Genetics and Molecular Biology [De Gruyter]
卷期号:4 (1): Article17-Article17 被引量:5794
标识
DOI:10.2202/1544-6115.1128
摘要

Gene co-expression networks are increasingly used to explore the system-level functionality of genes. The network construction is conceptually straightforward: nodes represent genes and nodes are connected if the corresponding genes are significantly co-expressed across appropriately chosen tissue samples. In reality, it is tricky to define the connections between the nodes in such networks. An important question is whether it is biologically meaningful to encode gene co-expression using binary information (connected=1, unconnected=0). We describe a general framework for `soft' thresholding that assigns a connection weight to each gene pair. This leads us to define the notion of a weighted gene co-expression network. For soft thresholding we propose several adjacency functions that convert the co-expression measure to a connection weight. For determining the parameters of the adjacency function, we propose a biologically motivated criterion (referred to as the scale-free topology criterion).We generalize the following important network concepts to the case of weighted networks. First, we introduce several node connectivity measures and provide empirical evidence that they can be important for predicting the biological significance of a gene. Second, we provide theoretical and empirical evidence that the `weighted' topological overlap measure (used to define gene modules) leads to more cohesive modules than its `unweighted' counterpart. Third, we generalize the clustering coefficient to weighted networks. Unlike the unweighted clustering coefficient, the weighted clustering coefficient is not inversely related to the connectivity. We provide a model that shows how an inverse relationship between clustering coefficient and connectivity arises from hard thresholding.We apply our methods to simulated data, a cancer microarray data set, and a yeast microarray data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助清颜采纳,获得10
1秒前
1秒前
乐观黎云完成签到,获得积分10
2秒前
杏里关注了科研通微信公众号
2秒前
星辰大海应助Huang采纳,获得10
2秒前
默默善愁发布了新的文献求助50
3秒前
3秒前
Alpha应助怡然的寻桃采纳,获得10
3秒前
大力帽子应助Haj1mi采纳,获得10
3秒前
深情安青应助ycy采纳,获得10
3秒前
领导范儿应助儒雅致远采纳,获得10
3秒前
泡泡儿发布了新的文献求助10
4秒前
阳光的桐完成签到,获得积分10
5秒前
6秒前
岳维芸发布了新的文献求助10
6秒前
好久不见应助听话的寒烟采纳,获得30
6秒前
xixi发布了新的文献求助30
7秒前
shushu完成签到 ,获得积分10
7秒前
完美世界应助yuaner采纳,获得10
7秒前
libe发布了新的文献求助10
8秒前
朴素的怜雪完成签到,获得积分10
8秒前
害怕的靖巧完成签到,获得积分10
9秒前
9秒前
wanci应助独特的采纳,获得10
10秒前
tiptip应助Wu采纳,获得10
10秒前
PAPA完成签到,获得积分10
11秒前
Orange应助renwoxing采纳,获得10
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
友好锦程完成签到,获得积分20
14秒前
慕青应助弯刀划过红玫瑰采纳,获得10
14秒前
hyf发布了新的文献求助10
16秒前
天天快乐应助求知的周采纳,获得10
16秒前
16秒前
17秒前
Abyxwz发布了新的文献求助10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694967
求助须知:如何正确求助?哪些是违规求助? 5099560
关于积分的说明 15214900
捐赠科研通 4851435
什么是DOI,文献DOI怎么找? 2602325
邀请新用户注册赠送积分活动 1554189
关于科研通互助平台的介绍 1512137