A General Framework for Weighted Gene Co-Expression Network Analysis

聚类系数 聚类分析 邻接矩阵 阈值 表达式(计算机科学) 节点(物理) 邻接表 计算机科学 度量(数据仓库) 基因调控网络 功能(生物学) 基因 数据挖掘 数学 拓扑(电路) 基因表达 生物网络 生物 人工智能 理论计算机科学 算法 组合数学 遗传学 图形 工程类 图像(数学) 程序设计语言 结构工程
作者
Bin Zhang,Steve Horvath
出处
期刊:Statistical Applications in Genetics and Molecular Biology [De Gruyter]
卷期号:4 (1): Article17-Article17 被引量:5794
标识
DOI:10.2202/1544-6115.1128
摘要

Gene co-expression networks are increasingly used to explore the system-level functionality of genes. The network construction is conceptually straightforward: nodes represent genes and nodes are connected if the corresponding genes are significantly co-expressed across appropriately chosen tissue samples. In reality, it is tricky to define the connections between the nodes in such networks. An important question is whether it is biologically meaningful to encode gene co-expression using binary information (connected=1, unconnected=0). We describe a general framework for `soft' thresholding that assigns a connection weight to each gene pair. This leads us to define the notion of a weighted gene co-expression network. For soft thresholding we propose several adjacency functions that convert the co-expression measure to a connection weight. For determining the parameters of the adjacency function, we propose a biologically motivated criterion (referred to as the scale-free topology criterion).We generalize the following important network concepts to the case of weighted networks. First, we introduce several node connectivity measures and provide empirical evidence that they can be important for predicting the biological significance of a gene. Second, we provide theoretical and empirical evidence that the `weighted' topological overlap measure (used to define gene modules) leads to more cohesive modules than its `unweighted' counterpart. Third, we generalize the clustering coefficient to weighted networks. Unlike the unweighted clustering coefficient, the weighted clustering coefficient is not inversely related to the connectivity. We provide a model that shows how an inverse relationship between clustering coefficient and connectivity arises from hard thresholding.We apply our methods to simulated data, a cancer microarray data set, and a yeast microarray data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NICAI应助游侠EX采纳,获得10
刚刚
纯真的曼荷完成签到 ,获得积分10
刚刚
2秒前
追寻的访文完成签到,获得积分10
7秒前
隐形曼青应助油柑美式采纳,获得10
7秒前
7秒前
张沁关注了科研通微信公众号
9秒前
jhxie发布了新的文献求助30
11秒前
12秒前
玄轩发布了新的文献求助10
16秒前
上官若男应助科研通管家采纳,获得10
22秒前
斯文败类应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
赘婿应助科研通管家采纳,获得10
22秒前
科目三应助科研通管家采纳,获得10
22秒前
我是老大应助科研通管家采纳,获得10
22秒前
小马甲应助科研通管家采纳,获得10
22秒前
22秒前
搜集达人应助科研通管家采纳,获得10
22秒前
小马甲应助科研通管家采纳,获得10
22秒前
孙文杰完成签到 ,获得积分10
22秒前
NexusExplorer应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
斯文败类应助科研通管家采纳,获得10
23秒前
爆米花应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得30
23秒前
田様应助科研通管家采纳,获得10
23秒前
CodeCraft应助科研通管家采纳,获得10
23秒前
深情安青应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
柴胡完成签到,获得积分10
23秒前
lvyuan完成签到,获得积分10
26秒前
良良丸发布了新的文献求助10
27秒前
orixero应助玄轩采纳,获得10
27秒前
yoneyamai完成签到,获得积分10
32秒前
椰子水完成签到,获得积分10
36秒前
张沁发布了新的文献求助10
37秒前
jhxie完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558160
求助须知:如何正确求助?哪些是违规求助? 4643117
关于积分的说明 14670585
捐赠科研通 4584558
什么是DOI,文献DOI怎么找? 2514964
邀请新用户注册赠送积分活动 1489078
关于科研通互助平台的介绍 1459713