亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A General Framework for Weighted Gene Co-Expression Network Analysis

聚类系数 聚类分析 邻接矩阵 阈值 表达式(计算机科学) 节点(物理) 邻接表 计算机科学 度量(数据仓库) 基因调控网络 功能(生物学) 基因 数据挖掘 数学 拓扑(电路) 基因表达 生物网络 生物 人工智能 理论计算机科学 算法 组合数学 遗传学 图形 工程类 图像(数学) 程序设计语言 结构工程
作者
Bin Zhang,Steve Horvath
出处
期刊:Statistical Applications in Genetics and Molecular Biology [De Gruyter]
卷期号:4 (1) 被引量:5341
标识
DOI:10.2202/1544-6115.1128
摘要

Gene co-expression networks are increasingly used to explore the system-level functionality of genes. The network construction is conceptually straightforward: nodes represent genes and nodes are connected if the corresponding genes are significantly co-expressed across appropriately chosen tissue samples. In reality, it is tricky to define the connections between the nodes in such networks. An important question is whether it is biologically meaningful to encode gene co-expression using binary information (connected=1, unconnected=0). We describe a general framework for `soft' thresholding that assigns a connection weight to each gene pair. This leads us to define the notion of a weighted gene co-expression network. For soft thresholding we propose several adjacency functions that convert the co-expression measure to a connection weight. For determining the parameters of the adjacency function, we propose a biologically motivated criterion (referred to as the scale-free topology criterion).We generalize the following important network concepts to the case of weighted networks. First, we introduce several node connectivity measures and provide empirical evidence that they can be important for predicting the biological significance of a gene. Second, we provide theoretical and empirical evidence that the `weighted' topological overlap measure (used to define gene modules) leads to more cohesive modules than its `unweighted' counterpart. Third, we generalize the clustering coefficient to weighted networks. Unlike the unweighted clustering coefficient, the weighted clustering coefficient is not inversely related to the connectivity. We provide a model that shows how an inverse relationship between clustering coefficient and connectivity arises from hard thresholding.We apply our methods to simulated data, a cancer microarray data set, and a yeast microarray data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
千里草完成签到,获得积分10
4秒前
彭日晓发布了新的文献求助10
6秒前
significant发布了新的文献求助10
9秒前
18秒前
32秒前
44秒前
1分钟前
忍忍发布了新的文献求助30
1分钟前
kingcoffee完成签到 ,获得积分10
1分钟前
忍忍完成签到 ,获得积分10
1分钟前
彭日晓完成签到,获得积分10
2分钟前
3分钟前
靓丽的熠彤完成签到,获得积分10
3分钟前
4分钟前
sho完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
Ysn完成签到,获得积分10
5分钟前
MchemG应助科研通管家采纳,获得10
5分钟前
Lny发布了新的文献求助20
6分钟前
6分钟前
slayers完成签到 ,获得积分10
7分钟前
7分钟前
story发布了新的文献求助30
7分钟前
7分钟前
Owen应助光亮雁玉采纳,获得10
8分钟前
SL完成签到,获得积分10
8分钟前
乐乐应助story采纳,获得10
8分钟前
科研通AI5应助光亮雁玉采纳,获得10
8分钟前
8分钟前
爆米花应助光亮雁玉采纳,获得10
8分钟前
Lny发布了新的文献求助20
8分钟前
冰西瓜完成签到 ,获得积分0
8分钟前
科目三应助光亮雁玉采纳,获得10
8分钟前
8分钟前
科研通AI5应助光亮雁玉采纳,获得10
8分钟前
鲁棒的砰砰砰完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569031
求助须知:如何正确求助?哪些是违规求助? 3991376
关于积分的说明 12355741
捐赠科研通 3663539
什么是DOI,文献DOI怎么找? 2018986
邀请新用户注册赠送积分活动 1053396
科研通“疑难数据库(出版商)”最低求助积分说明 940955