A General Framework for Weighted Gene Co-Expression Network Analysis

聚类系数 聚类分析 邻接矩阵 阈值 表达式(计算机科学) 节点(物理) 邻接表 计算机科学 度量(数据仓库) 基因调控网络 功能(生物学) 基因 数据挖掘 数学 拓扑(电路) 基因表达 生物网络 生物 人工智能 理论计算机科学 算法 组合数学 遗传学 图形 工程类 图像(数学) 程序设计语言 结构工程
作者
Bin Zhang,Steve Horvath
出处
期刊:Statistical Applications in Genetics and Molecular Biology [De Gruyter]
卷期号:4 (1): Article17-Article17 被引量:5794
标识
DOI:10.2202/1544-6115.1128
摘要

Gene co-expression networks are increasingly used to explore the system-level functionality of genes. The network construction is conceptually straightforward: nodes represent genes and nodes are connected if the corresponding genes are significantly co-expressed across appropriately chosen tissue samples. In reality, it is tricky to define the connections between the nodes in such networks. An important question is whether it is biologically meaningful to encode gene co-expression using binary information (connected=1, unconnected=0). We describe a general framework for `soft' thresholding that assigns a connection weight to each gene pair. This leads us to define the notion of a weighted gene co-expression network. For soft thresholding we propose several adjacency functions that convert the co-expression measure to a connection weight. For determining the parameters of the adjacency function, we propose a biologically motivated criterion (referred to as the scale-free topology criterion).We generalize the following important network concepts to the case of weighted networks. First, we introduce several node connectivity measures and provide empirical evidence that they can be important for predicting the biological significance of a gene. Second, we provide theoretical and empirical evidence that the `weighted' topological overlap measure (used to define gene modules) leads to more cohesive modules than its `unweighted' counterpart. Third, we generalize the clustering coefficient to weighted networks. Unlike the unweighted clustering coefficient, the weighted clustering coefficient is not inversely related to the connectivity. We provide a model that shows how an inverse relationship between clustering coefficient and connectivity arises from hard thresholding.We apply our methods to simulated data, a cancer microarray data set, and a yeast microarray data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
YXX发布了新的文献求助10
2秒前
2秒前
2秒前
敏敏完成签到,获得积分20
3秒前
小小怪发布了新的文献求助10
3秒前
3秒前
搜集达人应助八月十采纳,获得10
5秒前
6秒前
危机的丹雪完成签到,获得积分10
6秒前
6秒前
6秒前
隐形曼青应助仙人掌采纳,获得10
6秒前
6秒前
HHMTT完成签到,获得积分10
6秒前
科研通AI6应助sunyanghu369采纳,获得10
7秒前
qrwyqjbsd应助刘世昇采纳,获得10
8秒前
8秒前
傲娇的凡白关注了科研通微信公众号
8秒前
8秒前
田様应助lulu采纳,获得10
8秒前
8秒前
文艺迎夏完成签到,获得积分10
8秒前
9秒前
Wm200149发布了新的文献求助10
9秒前
9秒前
阿汐发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
10秒前
阿晓晓完成签到,获得积分10
11秒前
卡卡西发布了新的文献求助10
11秒前
ceeray23应助复杂的夜香采纳,获得10
12秒前
KY应助满满采纳,获得10
12秒前
科研小白发布了新的文献求助10
12秒前
zxzxzx发布了新的文献求助10
12秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551982
求助须知:如何正确求助?哪些是违规求助? 4636809
关于积分的说明 14645565
捐赠科研通 4578578
什么是DOI,文献DOI怎么找? 2511030
邀请新用户注册赠送积分活动 1486209
关于科研通互助平台的介绍 1457502