Statistics of local complexity in amino acid sequences and sequence databases

启发式 序列(生物学) 子序列 数学 计算复杂性理论 算法 熵(时间箭头) 计算机科学 组合数学 生物 遗传学 数学优化 有界函数 量子力学 物理 数学分析
作者
John C. Wootton,Scott Federhen
出处
期刊:Computers & chemistry [Elsevier]
卷期号:17 (2): 149-163 被引量:676
标识
DOI:10.1016/0097-8485(93)85006-x
摘要

Protein sequences contain surprisingly many local regions of low compositional complexity. These include different types of residue clusters, some of which contain homopolymers, short period repeats or aperiodic mosaics of a few residue types. Several different formal definitions of local complexity and probability are presented here and are compared for their utility in algorithms for localization of such regions in amino acid sequences and sequence databases. The definitions are:—(1) those derived from enumeration a priori by a treatment analogous to statistical mechanics, (2) a log likelihood definition of complexity analogous to informational entropy, (3) multinomial probabilities of observed compositions, (4) an approximation resembling the χ2 statistic and (5) a modification of the coefficient of divergence. These measures, together with a method based on similarity scores of self-aligned sequences at different offsets, are shown to be broadly similar for first-pass, approximate localization of low-complexity regions in protein sequences, but they give significantly different results when applied in optimal segmentation algorithms. These comparisons underpin the choice of robust optimization heuristics in an algorithm, SEG, designed to segment amino acid sequences fully automatically into subsequences of contrasting complexity. After the abundant low-complexity segments have been partitioned from the Swissprot database, the remaining high-complexity sequence set is adequately approximated by a first-order random model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小张早日毕业完成签到,获得积分10
1秒前
Likej完成签到,获得积分10
1秒前
淡淡宛完成签到 ,获得积分10
1秒前
1秒前
ding应助123455采纳,获得10
2秒前
2秒前
小二郎应助安静的小蚂蚁采纳,获得10
3秒前
Enri发布了新的文献求助10
4秒前
CH科研完成签到,获得积分10
4秒前
xxxxx炒菜完成签到,获得积分10
4秒前
cf关闭了cf文献求助
4秒前
4秒前
5秒前
科研通AI2S应助尛瞐慶成采纳,获得10
5秒前
王大锤完成签到,获得积分10
5秒前
干净的向真完成签到,获得积分10
6秒前
xxxxx炒菜发布了新的文献求助10
6秒前
科研通AI2S应助ZYC采纳,获得10
7秒前
亮子完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
9秒前
10秒前
WindDreamer完成签到,获得积分10
10秒前
Enri完成签到,获得积分10
10秒前
11秒前
领导范儿应助LSi奇采纳,获得10
11秒前
吴世勋发布了新的文献求助10
13秒前
天道酬勤发布了新的文献求助10
14秒前
冷静的铅笔完成签到,获得积分10
14秒前
学啊学啊发发完成签到,获得积分20
15秒前
田様应助xwl采纳,获得10
16秒前
Hayat发布了新的文献求助30
16秒前
17秒前
忧虑的火龙果完成签到,获得积分20
19秒前
铎铎铎完成签到 ,获得积分10
22秒前
彭于晏应助吴世勋采纳,获得10
23秒前
23秒前
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135055
求助须知:如何正确求助?哪些是违规求助? 2786055
关于积分的说明 7774839
捐赠科研通 2441865
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600825