亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Statistics of local complexity in amino acid sequences and sequence databases

启发式 序列(生物学) 子序列 数学 计算复杂性理论 算法 熵(时间箭头) 计算机科学 组合数学 生物 遗传学 数学优化 有界函数 量子力学 物理 数学分析
作者
John C. Wootton,Scott Federhen
出处
期刊:Computers & chemistry [Elsevier]
卷期号:17 (2): 149-163 被引量:676
标识
DOI:10.1016/0097-8485(93)85006-x
摘要

Protein sequences contain surprisingly many local regions of low compositional complexity. These include different types of residue clusters, some of which contain homopolymers, short period repeats or aperiodic mosaics of a few residue types. Several different formal definitions of local complexity and probability are presented here and are compared for their utility in algorithms for localization of such regions in amino acid sequences and sequence databases. The definitions are:—(1) those derived from enumeration a priori by a treatment analogous to statistical mechanics, (2) a log likelihood definition of complexity analogous to informational entropy, (3) multinomial probabilities of observed compositions, (4) an approximation resembling the χ2 statistic and (5) a modification of the coefficient of divergence. These measures, together with a method based on similarity scores of self-aligned sequences at different offsets, are shown to be broadly similar for first-pass, approximate localization of low-complexity regions in protein sequences, but they give significantly different results when applied in optimal segmentation algorithms. These comparisons underpin the choice of robust optimization heuristics in an algorithm, SEG, designed to segment amino acid sequences fully automatically into subsequences of contrasting complexity. After the abundant low-complexity segments have been partitioned from the Swissprot database, the remaining high-complexity sequence set is adequately approximated by a first-order random model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mrhughas完成签到,获得积分10
7秒前
田様应助张尧摇摇摇采纳,获得10
32秒前
40秒前
45秒前
Koala04完成签到,获得积分10
58秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
闪明火龙果完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
今后应助rebeycca采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
AliEmbark完成签到,获得积分10
5分钟前
Hello应助科研通管家采纳,获得10
5分钟前
VDC应助科研通管家采纳,获得30
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
抹不掉的记忆完成签到,获得积分10
5分钟前
Swear完成签到 ,获得积分10
5分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780479
求助须知:如何正确求助?哪些是违规求助? 5656040
关于积分的说明 15453184
捐赠科研通 4911071
什么是DOI,文献DOI怎么找? 2643267
邀请新用户注册赠送积分活动 1590941
关于科研通互助平台的介绍 1545457