Statistics of local complexity in amino acid sequences and sequence databases

启发式 序列(生物学) 子序列 数学 计算复杂性理论 算法 熵(时间箭头) 计算机科学 组合数学 生物 遗传学 数学优化 有界函数 量子力学 物理 数学分析
作者
John C. Wootton,Scott Federhen
出处
期刊:Computers & chemistry [Elsevier]
卷期号:17 (2): 149-163 被引量:676
标识
DOI:10.1016/0097-8485(93)85006-x
摘要

Protein sequences contain surprisingly many local regions of low compositional complexity. These include different types of residue clusters, some of which contain homopolymers, short period repeats or aperiodic mosaics of a few residue types. Several different formal definitions of local complexity and probability are presented here and are compared for their utility in algorithms for localization of such regions in amino acid sequences and sequence databases. The definitions are:—(1) those derived from enumeration a priori by a treatment analogous to statistical mechanics, (2) a log likelihood definition of complexity analogous to informational entropy, (3) multinomial probabilities of observed compositions, (4) an approximation resembling the χ2 statistic and (5) a modification of the coefficient of divergence. These measures, together with a method based on similarity scores of self-aligned sequences at different offsets, are shown to be broadly similar for first-pass, approximate localization of low-complexity regions in protein sequences, but they give significantly different results when applied in optimal segmentation algorithms. These comparisons underpin the choice of robust optimization heuristics in an algorithm, SEG, designed to segment amino acid sequences fully automatically into subsequences of contrasting complexity. After the abundant low-complexity segments have been partitioned from the Swissprot database, the remaining high-complexity sequence set is adequately approximated by a first-order random model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
1秒前
3秒前
asdfzxcv应助小giao吃不饱采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
初雪发布了新的文献求助10
6秒前
路宇鹏完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
天天快乐应助薛飞采纳,获得10
9秒前
li发布了新的文献求助10
9秒前
9秒前
Return发布了新的文献求助10
10秒前
cjh发布了新的文献求助10
10秒前
10秒前
鲤鱼水桃发布了新的文献求助10
10秒前
友好安白发布了新的文献求助10
12秒前
小马甲应助笑点低雨筠采纳,获得10
13秒前
行走人生发布了新的文献求助30
13秒前
喵喵完成签到 ,获得积分10
13秒前
Dy发布了新的文献求助10
13秒前
小鬼发布了新的文献求助10
14秒前
勤奋的缘郡完成签到,获得积分10
15秒前
994发布了新的文献求助10
15秒前
李健的小迷弟应助ZNX采纳,获得10
15秒前
16秒前
小蘑菇应助jovrtic采纳,获得10
16秒前
饱满以松完成签到 ,获得积分10
16秒前
19秒前
深情安青应助Scarlett采纳,获得10
20秒前
23秒前
小giao吃不饱完成签到,获得积分10
24秒前
24秒前
Lucas应助腼腆的月亮采纳,获得10
24秒前
红火完成签到 ,获得积分10
24秒前
xlnju完成签到,获得积分10
26秒前
123发布了新的文献求助30
27秒前
123发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649914
求助须知:如何正确求助?哪些是违规求助? 4779409
关于积分的说明 15050588
捐赠科研通 4808829
什么是DOI,文献DOI怎么找? 2571871
邀请新用户注册赠送积分活动 1528143
关于科研通互助平台的介绍 1486917