Improvement of a ground-LiDAR-based corn plant population and spacing measurement system

激光雷达 均方误差 基本事实 遥感 工程类 数学 统计 计算机科学 人工智能 地理 数据库
作者
Yeyin Shi,Ninglian WANG,Randal K. Taylor,W. R. Raun
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:112: 92-101 被引量:29
标识
DOI:10.1016/j.compag.2014.11.026
摘要

The variability of corn plant location and within-row spacing has been demonstrated to have a significant correlation with grain and biomass yield. They are included in many yield prediction models which are used to guide mid-season variable-rate fertilizer applications. A prototype sensing system was developed to automatically measure corn plant location and spacing on-the-go based on ground LiDAR technology. The system travelled along crop rows with a ground LiDAR sensor scanning at the bottom section of each corn plant. The possibility of corn stalk identification was increased because each stalk appeared in multiple scans from various view angles of the sensor. The first version of the prototyping system was developed earlier and resulted in a relatively low detecting accuracy. In this paper, an improved version of the prototyping system was presented with substantial additional field evaluation results. The system was improved in terms of the data acquisition platform and the data processing algorithms, specifically, the scan registration and stalk recognition procedures to reduce the misidentification errors. Additional field evaluation was conducted on 200 plants at their V8 growth stage. A total plant counting error of 5.5% and a 1.9 cm of root-mean-squared error (RMSE) in spacing measurement were achieved between the sensor measurements and the manually measured ground truth data. The new data processing algorithm was also tested on the data collected with the first version system. The false positive plant counting error was reduced from 24.0% with the first version system to 14.0% with the improved algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
水博士完成签到,获得积分10
刚刚
刚刚
2秒前
调研昵称发布了新的文献求助10
2秒前
暮色微凉完成签到,获得积分10
2秒前
中山完成签到,获得积分10
3秒前
科研通AI2S应助夏日天空采纳,获得10
3秒前
Owen应助畅快的鱼采纳,获得10
4秒前
不配.应助夏天采纳,获得10
5秒前
一亿发布了新的文献求助10
5秒前
6秒前
zhangtao完成签到,获得积分10
7秒前
8秒前
10秒前
14秒前
miuu完成签到,获得积分10
14秒前
15秒前
15秒前
ding应助一亿采纳,获得10
15秒前
16秒前
淡淡的向梦应助甜美小蕾采纳,获得20
17秒前
重要半兰完成签到,获得积分20
20秒前
LYS发布了新的文献求助10
21秒前
21秒前
杜天豪发布了新的文献求助10
22秒前
24秒前
duan发布了新的文献求助10
24秒前
甜美小蕾完成签到,获得积分10
25秒前
小会发布了新的文献求助10
25秒前
26秒前
28秒前
Lucas应助冷静的仙人掌采纳,获得10
29秒前
30秒前
烟花应助苗儿采纳,获得10
30秒前
中山关注了科研通微信公众号
30秒前
乐乐应助完美的彩虹采纳,获得10
30秒前
宣孤菱发布了新的文献求助10
31秒前
31秒前
太阳完成签到,获得积分10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136300
求助须知:如何正确求助?哪些是违规求助? 2787312
关于积分的说明 7781050
捐赠科研通 2443321
什么是DOI,文献DOI怎么找? 1299108
科研通“疑难数据库(出版商)”最低求助积分说明 625345
版权声明 600922