Enhanced Photovoltaic Properties of a Cobalt Bipyridyl Redox Electrolyte in Dye-Sensitized Solar Cells Employing Vertically Aligned TiO2 Nanotube Electrodes

电极 色素敏化染料 电解质 材料科学 氧化还原 电化学 光电流 化学工程 化学 光电子学 工程类 物理化学 冶金
作者
Jae-Yup Kim,Kyung Jae Lee,Soon Hyung Kang,Junyoung Shin,Yung‐Eun Sung
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:115 (40): 19979-19985 被引量:58
标识
DOI:10.1021/jp2025736
摘要

Photovoltaic performances of TiO2 nanoparticle (NP) electrodes and TiO2 nanotube (NT) electrodes in dye-sensitized solar cells (DSSCs) employing a cobalt bipyridyl redox electrolyte were compared. The TiO2 NP electrodes had pore sizes ranging from 15 to 20 nm while the NT electrodes had a lager pore size of 80 nm. Highly ordered and vertically oriented TiO2 NT electrodes were prepared by a two-step anodization method. In application to DSSCs employing the cobalt redox electrolyte, the 11-μm-thick NP electrode exhibited an efficiency of 1.60% with a Jsc of 3.96 mA/cm2. Meanwhile, despite nearly half of the amount of adsorbed dye molecules, the 11-μm-thick NT electrode exhibited a slightly enhanced efficiency of 1.84% with a Jsc of 5.86 mA/cm2. In addition, the 35-μm-thick NT electrode showed an efficiency of 2.38% with a Jsc of 9.80 mA/cm2. Compared to the 11-μm-thick NP electrode, the 35-μm-thick NT electrode exhibited a 1.5 times higher efficiency with a 2.5 times higher Jsc in spite of having a similar amount of adsorbed dye molecules. Photocurrent transient measurements revealed that the mass transport limitation of the cobalt redox electrolyte within the conventional NP electrodes was greatly alleviated within the NT electrodes. In addition, the electrochemical impedance spectra indicated that the interfacial contact between the cobalt redox electrolyte and TiO2 electrode was prominently enhanced in the NT electrodes. Furthermore, the electron lifetime and electron diffusion length were all greatly longer within the NT electrodes. These superior photovoltaic properties may be attributed to the large pore size and vertically oriented structures of the NT electrodes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shoshana完成签到,获得积分10
1秒前
1秒前
甜北枳完成签到,获得积分10
2秒前
承乐发布了新的文献求助10
2秒前
珊珊发布了新的文献求助10
2秒前
简单幸福完成签到 ,获得积分0
2秒前
4秒前
无花果应助adamwang采纳,获得10
4秒前
4秒前
HCT发布了新的文献求助10
4秒前
6秒前
Kondo发布了新的文献求助10
7秒前
小鱼完成签到 ,获得积分10
8秒前
一一应助有意义采纳,获得10
8秒前
8秒前
橘猫完成签到 ,获得积分10
8秒前
8秒前
8秒前
9秒前
求求你帮帮我完成签到,获得积分10
9秒前
共享精神应助珊珊采纳,获得10
9秒前
共享精神应助禹宛白采纳,获得10
9秒前
9秒前
10秒前
长情的小鸽子完成签到,获得积分10
10秒前
157295108发布了新的文献求助10
11秒前
烟花应助zxcvvbnm采纳,获得10
11秒前
11秒前
阔达如松发布了新的文献求助10
11秒前
WNL发布了新的文献求助10
11秒前
坚强水杯发布了新的文献求助60
12秒前
14秒前
善学以致用应助oue采纳,获得10
14秒前
14秒前
14秒前
HCT完成签到,获得积分10
15秒前
15秒前
15秒前
limerence发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802