已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning Verbs in English and Korean: The Roles of Word Order and Argument Drop

论证(复杂分析) 语序 计算机科学 语言学 自然语言处理 下降(电信) 辍学 人工智能 心理学 哲学 人口经济学 生物化学 电信 经济 化学
作者
Huanhuan Shi,Angela Xiaoxue He,Hyun‐joo Song,Kyong‐sun Jin,Sudha Arunachalam
出处
期刊:Language Learning and Development [Informa]
卷期号:: 1-21
标识
DOI:10.1080/15475441.2023.2165926
摘要

To learn new words, particularly verbs, child learners have been shown to benefit from the linguistic contexts in which the words appear. However, cross-linguistic differences affect how this process unfolds. One previous study found that children’s abilities to learn a new verb differed across Korean and English as a function of the sentence in which the verb occurred. The authors hypothesized that the properties of word order and argument drop, which vary systematically in these two languages, were driving the differences. In the current study, we pursued this finding to ask if the difference persists later in development, or if children acquiring different languages come to appear more similar as their linguistic knowledge and learning capacities increase. Preschool-aged monolingual English learners (N = 80) and monolingual Korean learners (N = 64) were presented with novel verbs in contexts that varied in word order and argument drop and accompanying visual stimuli. We assessed their learning by measuring accuracy in a forced-choice pointing task, and we measured eye gaze during the learning phase as an indicator of the processes by which they mapped the novel verbs to meaning. Unlike previous studies which identified differences between English and Korean learning 2-year-olds in a similar task, our results revealed similarities between the two language groups with these older preschoolers. We interpret our results as evidence that over the course of early childhood, children become adept at learning from a large variety of contexts, such that differences between learners of different languages are attenuated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助虚心怜阳采纳,获得10
1秒前
领导范儿应助墨瞳采纳,获得80
3秒前
fransiccarey完成签到,获得积分10
4秒前
棠棠发布了新的文献求助10
4秒前
8秒前
西哥完成签到 ,获得积分10
9秒前
ggn完成签到 ,获得积分10
9秒前
ekes关注了科研通微信公众号
10秒前
王紫宁完成签到,获得积分10
10秒前
SPUwangshunfeng完成签到,获得积分10
13秒前
Aniya_Shine完成签到 ,获得积分10
15秒前
明时完成签到,获得积分10
17秒前
AAAADiao完成签到 ,获得积分10
17秒前
Monica完成签到,获得积分10
18秒前
22秒前
刻苦的元风完成签到,获得积分10
23秒前
七仔完成签到 ,获得积分10
24秒前
yhmi0809发布了新的文献求助10
24秒前
25秒前
小诸葛完成签到 ,获得积分10
26秒前
Cassie完成签到 ,获得积分10
27秒前
墨瞳发布了新的文献求助80
28秒前
南寅完成签到,获得积分10
30秒前
樱桃猴子应助科研通管家采纳,获得10
32秒前
华仔应助科研通管家采纳,获得10
32秒前
cc应助科研通管家采纳,获得10
32秒前
32秒前
coffee完成签到,获得积分10
34秒前
辛勤晓旋完成签到,获得积分10
34秒前
35秒前
joe完成签到 ,获得积分0
35秒前
洪东智完成签到,获得积分10
36秒前
36秒前
36秒前
来了完成签到 ,获得积分10
39秒前
coffee发布了新的文献求助10
40秒前
奕泽完成签到 ,获得积分10
42秒前
洪东智发布了新的文献求助10
42秒前
冯先生完成签到,获得积分10
43秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130002
求助须知:如何正确求助?哪些是违规求助? 2780801
关于积分的说明 7750187
捐赠科研通 2436031
什么是DOI,文献DOI怎么找? 1294484
科研通“疑难数据库(出版商)”最低求助积分说明 623703
版权声明 600570