Tau and tubulin protein aggregation characterization by solid-state nanopore method and atomic force microscopy

纳米孔 单体 氮化硅 微管蛋白 分子 化学 离子键合 力谱学 二聚体 材料科学 纳米技术 分析化学(期刊) 结晶学 聚合物 离子 微管 色谱法 有机化学 细胞生物学 生物
作者
Mitu C. Acharjee,Haopeng Li,Ryan Rollings,Bo Ma,Steve Tung,Jiali Li
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:133 (2) 被引量:7
标识
DOI:10.1063/5.0123688
摘要

In this study, a silicon nitride nanopore-based sensing system was used to measure tau and tubulin monomers and their aggregations in salt solution at a single molecule level. Nanopores (6–30 nm) were fabricated on silicon nitride membranes supported by silicon substrates using a combination of focused ion beam milling and ion beam sculpting. When a charged protein molecule in the salt solution passes through a nanopore driven by an applied voltage, the protein molecule increases pore resistivity, which induces an ionic current drop that can be measured. The current drop amplitude is directly proportional to the local excluded volume of the protein molecule in the nanopore. We measured the monomers and aggregations of tau and tubulin proteins at biased voltages from 60 to 210 mV in a solution of pH 7.0–10. Our results showed that (1) the nanopore method was able to differentiate tau and tubulin proteins in their monomer and aggregated forms by their excluded volumes; (2) the most probable aggregation form was dimer for α- and β-tubulin and pentamer for αβ tubulin plus tau under experimental conditions; (3) the protein excluded volumes measured by the nanopore method depended on the applied voltage, and this observation could be explained by the nonuniform charge distribution of proteins. The monomer and aggregated proteins were further analyzed using atomic force spectroscopy (AFM), and protein volumes estimated by AFM were consistent with nanopore results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是我呀吼完成签到,获得积分10
刚刚
1秒前
了一李完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
tyt完成签到 ,获得积分10
1秒前
1秒前
ctttt发布了新的文献求助10
2秒前
残剑月完成签到,获得积分10
2秒前
2秒前
2秒前
pxin完成签到,获得积分10
2秒前
ym完成签到 ,获得积分10
3秒前
我滴个完成签到,获得积分10
3秒前
隐形曼青应助七七采纳,获得10
3秒前
失眠的飞柏完成签到,获得积分10
4秒前
Legend完成签到,获得积分10
4秒前
sun发布了新的文献求助10
4秒前
剩下的盛夏完成签到,获得积分10
5秒前
田様应助lei1987采纳,获得10
5秒前
Bdk完成签到 ,获得积分10
5秒前
5秒前
残剑月发布了新的文献求助10
6秒前
6秒前
打打应助雷雷采纳,获得10
7秒前
7秒前
不安冰棍完成签到,获得积分20
7秒前
无语的怜梦完成签到,获得积分10
7秒前
7秒前
雨的印记发布了新的文献求助30
8秒前
锋芒不毕露完成签到,获得积分10
8秒前
可靠诗筠完成签到 ,获得积分10
8秒前
现代海蓝完成签到,获得积分10
8秒前
9秒前
美好的羊青完成签到,获得积分10
9秒前
zhangyu完成签到,获得积分10
9秒前
时肆万完成签到,获得积分10
9秒前
9秒前
OuO完成签到,获得积分10
9秒前
慕青应助homelo采纳,获得10
10秒前
思源应助大熊啵啵啵采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665057
求助须知:如何正确求助?哪些是违规求助? 4874914
关于积分的说明 15111693
捐赠科研通 4824234
什么是DOI,文献DOI怎么找? 2582679
邀请新用户注册赠送积分活动 1536639
关于科研通互助平台的介绍 1495242