Tau and tubulin protein aggregation characterization by solid-state nanopore method and atomic force microscopy

纳米孔 单体 氮化硅 微管蛋白 分子 化学 离子键合 力谱学 二聚体 材料科学 纳米技术 分析化学(期刊) 结晶学 聚合物 离子 微管 色谱法 有机化学 细胞生物学 生物
作者
Mitu C. Acharjee,Haopeng Li,Ryan Rollings,Bo Ma,Steve Tung,Jiali Li
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:133 (2) 被引量:7
标识
DOI:10.1063/5.0123688
摘要

In this study, a silicon nitride nanopore-based sensing system was used to measure tau and tubulin monomers and their aggregations in salt solution at a single molecule level. Nanopores (6–30 nm) were fabricated on silicon nitride membranes supported by silicon substrates using a combination of focused ion beam milling and ion beam sculpting. When a charged protein molecule in the salt solution passes through a nanopore driven by an applied voltage, the protein molecule increases pore resistivity, which induces an ionic current drop that can be measured. The current drop amplitude is directly proportional to the local excluded volume of the protein molecule in the nanopore. We measured the monomers and aggregations of tau and tubulin proteins at biased voltages from 60 to 210 mV in a solution of pH 7.0–10. Our results showed that (1) the nanopore method was able to differentiate tau and tubulin proteins in their monomer and aggregated forms by their excluded volumes; (2) the most probable aggregation form was dimer for α- and β-tubulin and pentamer for αβ tubulin plus tau under experimental conditions; (3) the protein excluded volumes measured by the nanopore method depended on the applied voltage, and this observation could be explained by the nonuniform charge distribution of proteins. The monomer and aggregated proteins were further analyzed using atomic force spectroscopy (AFM), and protein volumes estimated by AFM were consistent with nanopore results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Sera完成签到,获得积分10
2秒前
Denmark发布了新的文献求助10
3秒前
3秒前
gxt完成签到,获得积分10
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
郭耀锐发布了新的文献求助10
6秒前
小王小王完成签到,获得积分10
6秒前
彭于晏应助vv采纳,获得10
7秒前
8秒前
8秒前
Hello应助感性的天蓉采纳,获得10
9秒前
9秒前
学术乞丐完成签到,获得积分10
10秒前
11秒前
那西西发布了新的文献求助10
11秒前
qiqi完成签到,获得积分10
13秒前
14秒前
14秒前
leclerc完成签到,获得积分10
14秒前
14秒前
xiaoz发布了新的文献求助10
14秒前
你能行发布了新的文献求助30
15秒前
李爱国应助argal采纳,获得10
15秒前
gudujian870928完成签到,获得积分10
15秒前
17秒前
杜青发布了新的文献求助10
18秒前
shutup发布了新的文献求助10
18秒前
20秒前
Lotus发布了新的文献求助50
20秒前
cnyyp完成签到,获得积分10
20秒前
正直的沛凝发布了新的文献求助100
21秒前
21秒前
森山完成签到,获得积分10
21秒前
文静冬瓜发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641911
求助须知:如何正确求助?哪些是违规求助? 4757635
关于积分的说明 15015486
捐赠科研通 4800390
什么是DOI,文献DOI怎么找? 2566016
邀请新用户注册赠送积分活动 1524164
关于科研通互助平台的介绍 1483790