Microstructure evolution and mechanical property strengthening mechanisms of Cu/Cu NPs/Cu joint fabricated by ultrasonic spot welding

材料科学 焊接 复合材料 微观结构 等轴晶 接头(建筑物) 焊接 脆性 超声波焊接 空化 冶金 结构工程 机械 物理 工程类
作者
Zenglei Ni,Junjin Ma,Y. Liu,B.H. Li,X.X. Wang,F.X. Ye
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier]
卷期号:866: 144656-144656 被引量:4
标识
DOI:10.1016/j.msea.2023.144656
摘要

Ultrasonic spot welding, as a high strain rate plastic deformation process, utilizes the high frequency sliding between the metal sheets to generate a solid-state joining. For the ultrasonic spot welded Cu/Cu joint, even with the good metallurgical bonding at the welding interface, it couldn't obtain high T-peel strength and maintain quite high T-peel load bearing capacity before failure. In order to enhance the T-peel strength and bearing capacity, Cu nanopaticles (NPs) interlayer was screen-printed on the Cu sheet surface that was to be welded. It was beneficial to enhance the temperature at the welding interface and the degree of dynamic recrystallization, obtain the nano-scaled equiaxed grains with random orientations at the welding interface, and change the microstructure evolution pattern along the weld thickness. These results are key factors to the improvement of the joint mechanical strength. In comparison with the Cu/Cu joint, the T-peel strength of the Cu/Cu NPs/Cu joint (471.7 N) was increased by 69.4%, the displacement (0.97 mm) corresponding to the T-peel strength was enhanced by 42.7%, the obviously increased fracture energy was achieved, and quite high T-peel load bearing capacity could be maintained after exceeded the T-peel strength. The mixed failure modes of brittle cleavage and quasi-cleavage as well as shallow dimples fracture occurred in the Cu/Cu joint. However, the failure mode for the Cu/Cu NPs/Cu joint was turn into the micro-void coalescence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今后应助xuwan采纳,获得10
1秒前
lz12345发布了新的文献求助10
2秒前
3秒前
姚老师发布了新的文献求助10
3秒前
abner完成签到,获得积分10
4秒前
4秒前
4秒前
OCTOPUS完成签到 ,获得积分10
4秒前
5秒前
6秒前
7秒前
OCTOPUS关注了科研通微信公众号
8秒前
8秒前
8秒前
PATTOM完成签到,获得积分10
10秒前
如初应助一小只采纳,获得10
10秒前
制冷剂发布了新的文献求助10
11秒前
不爱喝可乐完成签到,获得积分10
12秒前
12秒前
12秒前
14秒前
15秒前
16秒前
不来应助Hey采纳,获得10
17秒前
Lxk完成签到,获得积分10
17秒前
17秒前
17秒前
jun完成签到,获得积分10
17秒前
18秒前
是木易呀应助呃呃采纳,获得10
18秒前
18秒前
18秒前
烟花应助海边看日出采纳,获得10
19秒前
打打应助飞跃采纳,获得10
20秒前
小马甲应助huacai采纳,获得10
20秒前
21秒前
22秒前
朱安南完成签到,获得积分10
22秒前
伞兵一号卢本伟完成签到,获得积分10
22秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3325661
求助须知:如何正确求助?哪些是违规求助? 2956332
关于积分的说明 8580190
捐赠科研通 2634297
什么是DOI,文献DOI怎么找? 1441859
科研通“疑难数据库(出版商)”最低求助积分说明 667952
邀请新用户注册赠送积分活动 654791