Topological structure and global features enhanced graph reasoning model for non-small cell lung cancer segmentation from CT

分割 肺癌 图形 计算机断层摄影术 计算机科学 拓扑(电路) 人工智能 医学 放射科 数学 理论计算机科学 病理 组合数学
作者
Tiangang Zhang,Kai Wang,Hui Cui,Qiangguo Jin,Peng Cheng,Toshiya Nakaguchi,Changyang Li,Zhiyu Ning,Linlin Wang,Ping Xuan
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (2): 025007-025007 被引量:5
标识
DOI:10.1088/1361-6560/acabff
摘要

Abstract Objective. Accurate and automated segmentation of lung tumors from computed tomography (CT) images is critical yet challenging. Lung tumors are of various sizes and locations and have indistinct boundaries adjacent to other normal tissues. Approach. We propose a new segmentation model that can integrate the topological structure and global features of image region nodes to address the challenges. Firstly, we construct a weighted graph with image region nodes. The graph topology reflects the complex spatial relationships among these nodes, and each node has its specific attributes. Secondly, we propose a node-wise topological feature learning module based on a new graph convolutional autoencoder (GCA). Meanwhile, a node information supplementation (GNIS) module is established by integrating specific features of each node extracted by a convolutional neural network (CNN) into each encoding layer of GCA. Afterwards, we construct a global feature extraction model based on multi-layer perceptron (MLP) to encode the features learnt from all the image region nodes which are crucial complementary information for tumor segmentation. Main results. Ablation study results over the public lung tumor segmentation dataset demonstrate the contributions of our major technical innovations. Compared with other segmentation methods, our new model improves the segmentation performance and has generalization ability on different 3D image segmentation backbones. Our model achieved Dice of 0.7827, IoU of 0.6981, and HD of 32.1743 mm on the public dataset 2018 Medical Segmentation Decathlon challenge, and Dice of 0.7004, IoU of 0.5704 and HD of 64.4661 mm on lung tumor dataset from Shandong Cancer Hospital. Significance . The novel model improves automated lung tumor segmentation performance especially the challenging and complex cases using topological structure and global features of image region nodes. It is of great potential to apply the model to other CT segmentation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cocolu应助默默的化蛹采纳,获得10
2秒前
三斤橙子完成签到,获得积分10
4秒前
doubleshake发布了新的文献求助10
5秒前
chi发布了新的文献求助10
5秒前
轻松向彤给轻松向彤的求助进行了留言
8秒前
贝湾完成签到,获得积分10
9秒前
千里共婵娟应助欣喜大门采纳,获得10
9秒前
9秒前
9秒前
10秒前
笑点低的斑马完成签到,获得积分10
10秒前
doubleshake完成签到,获得积分10
11秒前
11秒前
无情的宛儿完成签到,获得积分10
12秒前
zyt完成签到,获得积分10
13秒前
小摩尔发布了新的文献求助10
13秒前
黎小静完成签到,获得积分20
14秒前
15秒前
李健应助阿耒采纳,获得10
15秒前
淡然的以珊完成签到,获得积分20
16秒前
Linazhu发布了新的文献求助10
16秒前
123完成签到 ,获得积分10
17秒前
Nolan完成签到,获得积分10
19秒前
21秒前
21秒前
22秒前
我我我我应助shuo采纳,获得10
22秒前
23秒前
Linazhu完成签到,获得积分10
24秒前
Muse应助张小采纳,获得10
24秒前
llfire发布了新的文献求助10
24秒前
25秒前
欧阳万仇发布了新的文献求助10
25秒前
白凉鞋发布了新的文献求助10
26秒前
29秒前
2222222完成签到,获得积分10
29秒前
贤惠的迎夏完成签到,获得积分10
32秒前
ZS完成签到,获得积分10
34秒前
37秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343583
求助须知:如何正确求助?哪些是违规求助? 2970629
关于积分的说明 8644643
捐赠科研通 2650717
什么是DOI,文献DOI怎么找? 1451432
科研通“疑难数据库(出版商)”最低求助积分说明 672137
邀请新用户注册赠送积分活动 661569