Oxygen-vacancy europium-doped MnO2 ultrathin nanosheets used as asymmetric supercapacitors

超级电容器 电容 材料科学 兴奋剂 纳米材料 电化学 纳米技术 功率密度 电导率 化学工程 水平扫描速率 电极 光电子学 化学 物理化学 功率(物理) 循环伏安法 物理 发光 工程类 量子力学
作者
Yanmei Liang,Danhua Zhu,Shixing Chao,Meihua Hu,Danqin Li,Weiqiang Zhou,Jingkun Xu,Xuemin Duan,Peipei Liu
出处
期刊:Journal of energy storage [Elsevier]
卷期号:60: 106673-106673 被引量:57
标识
DOI:10.1016/j.est.2023.106673
摘要

In term of supercapacitors application, MnO2 has been recognized as a popular pseudocapacitive material on account of its environmental friendliness, cost inexpensive, plentiful abundance and high theoretical capacitance. However, its inherently low conductivity and structural instability lead to low specific capacitance and short cycle life, which greatly limit its development. Rare-earth doping can manipulate the size, shape, and crystallographic phase of doped nanomaterials. For the sake of hoisting the supercapacitors performance of MnO2, herein, we synthesized europium-doping MnO2 (Eu5%-MnO2) ultrathin nanosheets (3.4 nm) possessing rich oxygen vacancies via a facile co-precipitation strategy. The specific capacitance of Eu5%-MnO2 at 1 A g−1 is 361.2 F g−1 and remains 100% after 10,000 cycles, outperforming of MnO2 nanosheets (198 F g−1, 82.8%). The reason of enhancing performance may be mainly correlation to the heighten conductivity, boosted surface reactivity and electrochemical active sites. The assembled Eu5%-MnO2//AC device at 1 A g−1 can reach 63.36 F g−1 with high voltage of 3 V and exerts 19.8 Wh kg−1 of energy density when the power density is 373.2 W kg−1. This synthesis technique is a simple and convenient means for the development of high-performance MnO2-based energy storage electrodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ning发布了新的文献求助10
刚刚
刚刚
元谷雪发布了新的文献求助10
1秒前
1秒前
2秒前
Return应助科研通管家采纳,获得10
2秒前
积极的箴完成签到,获得积分10
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
pluto应助哒哒哒采纳,获得10
3秒前
3秒前
Momomo应助哒哒哒采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
淡定宛白完成签到,获得积分10
3秒前
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Akim应助科研通管家采纳,获得10
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
手帕很忙发布了新的文献求助30
3秒前
寻道图强应助66采纳,获得50
4秒前
4秒前
温馨发布了新的文献求助10
5秒前
wink完成签到 ,获得积分10
5秒前
fu发布了新的文献求助10
5秒前
小贾发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277