Thermoelectric Energy Harvesting for Exhaust Waste Heat Recovery: A System Design

热电发电机 散热片 余热 机械工程 材料科学 余热回收装置 碲化铋 热电效应 汽车工程 热能 热交换器 废气 核工程 热电材料 工程类 热导率 物理 复合材料 热力学 废物管理 量子力学
作者
Rabeya Bosry Smriti,Wenjie Li,Amin Nozariasbmarz,Subrata Ghosh,Na Liu,Christopher D. Rahn,Mohan Sanghadasa,Shashank Priya,Bed Poudel
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c18023
摘要

Thermal energy harvesting for high-speed moving objects is particularly promising in providing an efficient and sustainable energy source to enhance operational capabilities and endurance. Thermoelectric (TE) technology, by exploiting temperature gradients between a heat source and ambient temperature, can provide a continuous power supply to such systems, reducing the reliance on conventional batteries and extending operation times. However, the integrated thermoelectric generator (TEG) system design research is far behind materials development. In this study, both experimental and numerical studies of TEG systems are designed and conducted to recover thermal energy. An integrated proof-of-concept platform is developed to simulate an exhaust gas emission system and demonstrate the designed TEG system performance. Triangular plate-fin heat exchangers are designed to collect heat from exhaust pipelines such as engine exhaust gas. While longitudinal trapezoidal fin cylindrical heatsink is designed for dissipating heat via forced convection, particularly for high-speed moving objects, the heatsink design is optimized using finite element analysis (FEA) simulations to maximize the temperature gradient and electrical output power. As a result, under a temperature gradient (ΔT) of 190 °C with commercial bismuth telluride-based TE modules, a maximum system output power of 40 W is achieved experimentally. Furthermore, a computational simulation is conducted to showcase the feasibility of the current system design under high-speed moving vehicle conditions. This study provides an advanced TEG system design bridging the TE device and integrated system transition and represents a potential advancement in the pursuit of high-speed moving objects such as autonomous and longer-lasting aerial platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天明完成签到,获得积分10
刚刚
1秒前
2秒前
Akim应助飞翔的企鹅采纳,获得30
3秒前
收拾收拾发布了新的文献求助30
3秒前
活力安南完成签到,获得积分10
6秒前
robinhood完成签到,获得积分10
6秒前
过时的映雁完成签到,获得积分10
6秒前
专注的班发布了新的文献求助10
7秒前
田様应助276868sxzz采纳,获得10
8秒前
first发布了新的文献求助10
8秒前
李健的粉丝团团长应助zyj采纳,获得10
8秒前
科研通AI5应助安殿夏采纳,获得10
10秒前
潘宋完成签到,获得积分10
10秒前
研友_LX66qZ完成签到,获得积分10
10秒前
HMONEY应助街霸采纳,获得10
10秒前
11秒前
12秒前
12秒前
Nzee完成签到,获得积分10
12秒前
JIA完成签到,获得积分20
13秒前
13秒前
华仔应助mice33采纳,获得10
13秒前
共享精神应助高大雁兰采纳,获得10
14秒前
CodeCraft应助爬不起来采纳,获得10
15秒前
yy应助简易采纳,获得10
17秒前
丘比特应助nnn采纳,获得10
18秒前
first完成签到,获得积分10
19秒前
JIA发布了新的文献求助30
19秒前
wzz完成签到,获得积分10
19秒前
20秒前
20秒前
21秒前
压线大王完成签到 ,获得积分10
21秒前
23秒前
嘚嘚发布了新的文献求助10
23秒前
爬不起来发布了新的文献求助10
24秒前
橙皮or陈皮完成签到,获得积分10
24秒前
24秒前
vivianzhang完成签到,获得积分10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740628
求助须知:如何正确求助?哪些是违规求助? 3283472
关于积分的说明 10035486
捐赠科研通 3000287
什么是DOI,文献DOI怎么找? 1646438
邀请新用户注册赠送积分活动 783615
科研通“疑难数据库(出版商)”最低求助积分说明 750411