Multi-Omics Research on Angina Pectoris: A Novel Perspective

组学 透视图(图形) 稳定型心绞痛 心绞痛 医学 心脏病学 冠心病 内科学 生物信息学 计算机科学 心肌梗塞 生物 人工智能
作者
Haiyang Chen,Lijun Zhang,Meiyan Liu,Yanwei Li,Yunpeng Chi
出处
期刊:Aging and Disease [Aging and Disease]
标识
DOI:10.14336/ad.2024.1298
摘要

Angina pectoris (AP), a clinical syndrome characterized by paroxysmal chest pain, is caused by insufficient blood supply to the coronary arteries and sudden temporary myocardial ischemia and hypoxia. Long-term AP typically induces other cardiovascular events, including myocardial infarction and heart failure, posing a serious threat to patient safety. However, AP's complex pathological mechanisms and developmental processes introduce significant challenges in the rapid diagnosis and accurate treatment of its different subtypes, including stable angina pectoris (SAP), unstable angina pectoris (UAP), and variant angina pectoris (VAP). Omics research has contributed significantly to revealing the pathological mechanisms of various diseases with the rapid development of high-throughput sequencing approaches. The application of multi-omics approaches effectively interprets systematic information on diseases from the perspective of genes, RNAs, proteins, and metabolites. Integrating multi-omics research introduces novel avenues for identifying biomarkers to distinguish different AP subtypes. This study reviewed articles related to multi-omics and AP to elaborate on the research progress in multi-omics approaches (including genomics, transcriptomics, proteomics, and metabolomics), summarized their applications in screening biomarkers employed to discriminate multiple AP subtypes, and delineated integration methods for multi-omics approaches. Finally, we discussed the advantages and disadvantages of applying a single-omics approach in distinguishing diverse AP subtypes. Our review demonstrated that the integration of multi-omics technologies is preferable for quick and precise diagnosis of the three AP types, namely SAP, UAP, and VAP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大模型应助度容采纳,获得10
1秒前
Kyrie发布了新的文献求助10
1秒前
完美世界应助爱学习的YY采纳,获得10
3秒前
3秒前
Islet发布了新的文献求助10
4秒前
清图完成签到,获得积分10
4秒前
ANNNNN发布了新的文献求助10
5秒前
5秒前
8秒前
8秒前
彭佳丽发布了新的文献求助10
8秒前
gugu完成签到,获得积分10
8秒前
研友_VZG7GZ应助Kyrie采纳,获得10
9秒前
CipherSage应助super chan采纳,获得10
9秒前
莫羽倾尘发布了新的文献求助20
9秒前
宝海青发布了新的文献求助10
9秒前
无花果应助bofu采纳,获得10
10秒前
Leolefroy完成签到,获得积分10
11秒前
lee完成签到,获得积分10
11秒前
11秒前
13秒前
NexusExplorer应助拓小八采纳,获得30
13秒前
李健应助和光同尘采纳,获得10
14秒前
黄小佳发布了新的文献求助10
14秒前
火火完成签到,获得积分10
17秒前
共享精神应助bofu采纳,获得10
19秒前
雨er发布了新的文献求助10
19秒前
jm发布了新的文献求助10
22秒前
22秒前
852应助一两风采纳,获得10
22秒前
hao完成签到,获得积分10
25秒前
25秒前
cocolu应助wqy采纳,获得10
26秒前
淡淡冬瓜完成签到,获得积分10
26秒前
cocolu应助wqy采纳,获得30
26秒前
suliang应助QQ采纳,获得10
26秒前
万能图书馆应助bofu采纳,获得10
26秒前
今后应助不会起名采纳,获得30
27秒前
dracovu完成签到,获得积分10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309669
求助须知:如何正确求助?哪些是违规求助? 2942933
关于积分的说明 8511870
捐赠科研通 2618027
什么是DOI,文献DOI怎么找? 1430770
科研通“疑难数据库(出版商)”最低求助积分说明 664273
邀请新用户注册赠送积分活动 649451