Artificial intelligence-enhanced MRI-based preoperative staging in patients with endometrial cancer

医学 子宫内膜癌 放射科 肿瘤科 普通外科 癌症 内科学
作者
Lise Lecointre,Julia Alekseenko,Matteo Pavone,Alexandros Karargyris,Francesco Fanfani,Anna Fagotti,Giovanni Scambia,Denis Querleu,Chérif Akladios,Jérémy Dana,Nicolas Padoy
出处
期刊:International Journal of Gynecological Cancer [BMJ]
卷期号:35 (1): 100017-100017
标识
DOI:10.1016/j.ijgc.2024.100017
摘要

Evaluation of prognostic factors is crucial in patients with endometrial cancer for optimal treatment planning and prognosis assessment. This study proposes a deep learning pipeline for tumor and uterus segmentation from magnetic resonance imaging (MRI) images to predict deep myometrial invasion and cervical stroma invasion and thus assist clinicians in pre-operative workups. Two experts consensually reviewed the MRIs and assessed myometrial invasion and cervical stromal invasion as per the International Federation of Gynecology and Obstetrics staging classification, to compare the diagnostic performance of the model with the radiologic consensus. The deep learning method was trained using sagittal T2-weighted images from 142 patients and tested with a 3-fold stratified test with 36 patients in each fold. Our solution is based on a segmentation module, which employed a 2-stage pipeline for efficient uterus in the whole MRI volume and then tumor segmentation in the uterus predicted region of interest. A total of 178 patients were included. For deep myometrial invasion prediction, the model achieved an average balanced test accuracy over 3-folds of 0.702, while experts reached an average accuracy of 0.769. For cervical stroma invasion prediction, our model demonstrated an average balanced accuracy of 0.721 on the 3-fold test set, while experts achieved an average balanced accuracy of 0.859. Additionally, the accuracy rates for uterus and tumor segmentation, measured by the Dice score, were 0.847 and 0.579 respectively. Despite the current challenges posed by variations in data, class imbalance, and the presence of artifacts, our fully automatic approach holds great promise in supporting in pre-operative staging. Moreover, it demonstrated a robust capability to segment key regions of interest, specifically the uterus and tumors, highlighting the positive impact our solution can bring to health care imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助儒雅谷芹采纳,获得10
刚刚
刚刚
背后梦安发布了新的文献求助10
刚刚
1秒前
无花果应助zz采纳,获得10
1秒前
1秒前
2秒前
3秒前
感性的大楚完成签到 ,获得积分10
4秒前
4秒前
5秒前
Mila发布了新的文献求助20
5秒前
Ice完成签到 ,获得积分10
5秒前
小二郎应助111222采纳,获得10
5秒前
CipherSage应助gabby采纳,获得10
5秒前
aaa完成签到,获得积分10
6秒前
bkagyin应助zzx采纳,获得10
7秒前
sherlym发布了新的文献求助10
7秒前
8秒前
所所应助米里迷路采纳,获得10
8秒前
li发布了新的文献求助10
8秒前
8秒前
pai先生完成签到 ,获得积分10
8秒前
Ruby发布了新的文献求助10
8秒前
球球发布了新的文献求助20
9秒前
月牙湾完成签到,获得积分10
10秒前
10秒前
思源应助reuslee采纳,获得10
10秒前
11秒前
yar应助额额采纳,获得10
12秒前
钙离子发布了新的文献求助10
12秒前
JamesPei应助优秀的枕头采纳,获得10
12秒前
儒雅谷芹发布了新的文献求助10
13秒前
爆米花完成签到,获得积分10
13秒前
蜗牛完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954999
求助须知:如何正确求助?哪些是违规求助? 3501277
关于积分的说明 11102247
捐赠科研通 3231584
什么是DOI,文献DOI怎么找? 1786477
邀请新用户注册赠送积分活动 870090
科研通“疑难数据库(出版商)”最低求助积分说明 801798