Artificial intelligence-enhanced MRI-based preoperative staging in patients with endometrial cancer

医学 子宫内膜癌 放射科 肿瘤科 普通外科 癌症 内科学
作者
Lise Lecointre,Julia Alekseenko,Matteo Pavone,Alexandros Karargyris,Francesco Fanfani,Anna Fagotti,Giovanni Scambia,Denis Querleu,Chérif Akladios,Jérémy Dana,Nicolas Padoy
出处
期刊:International Journal of Gynecological Cancer [BMJ]
卷期号:35 (1): 100017-100017
标识
DOI:10.1016/j.ijgc.2024.100017
摘要

Evaluation of prognostic factors is crucial in patients with endometrial cancer for optimal treatment planning and prognosis assessment. This study proposes a deep learning pipeline for tumor and uterus segmentation from magnetic resonance imaging (MRI) images to predict deep myometrial invasion and cervical stroma invasion and thus assist clinicians in pre-operative workups. Two experts consensually reviewed the MRIs and assessed myometrial invasion and cervical stromal invasion as per the International Federation of Gynecology and Obstetrics staging classification, to compare the diagnostic performance of the model with the radiologic consensus. The deep learning method was trained using sagittal T2-weighted images from 142 patients and tested with a 3-fold stratified test with 36 patients in each fold. Our solution is based on a segmentation module, which employed a 2-stage pipeline for efficient uterus in the whole MRI volume and then tumor segmentation in the uterus predicted region of interest. A total of 178 patients were included. For deep myometrial invasion prediction, the model achieved an average balanced test accuracy over 3-folds of 0.702, while experts reached an average accuracy of 0.769. For cervical stroma invasion prediction, our model demonstrated an average balanced accuracy of 0.721 on the 3-fold test set, while experts achieved an average balanced accuracy of 0.859. Additionally, the accuracy rates for uterus and tumor segmentation, measured by the Dice score, were 0.847 and 0.579 respectively. Despite the current challenges posed by variations in data, class imbalance, and the presence of artifacts, our fully automatic approach holds great promise in supporting in pre-operative staging. Moreover, it demonstrated a robust capability to segment key regions of interest, specifically the uterus and tumors, highlighting the positive impact our solution can bring to health care imaging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
静夜谧思完成签到,获得积分10
刚刚
pengzh发布了新的文献求助10
刚刚
laskxd发布了新的文献求助10
1秒前
wangjing发布了新的文献求助10
3秒前
3秒前
Chen发布了新的文献求助10
4秒前
李李李发布了新的文献求助10
4秒前
糖果发布了新的文献求助10
4秒前
4秒前
搞怪海瑶完成签到 ,获得积分10
5秒前
123456应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
7秒前
TN应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
脑洞疼应助瓶子采纳,获得30
7秒前
Percy完成签到 ,获得积分10
8秒前
pengzh完成签到,获得积分10
8秒前
9秒前
李李李完成签到,获得积分10
10秒前
丘比特应助。。采纳,获得10
12秒前
今后应助糖果采纳,获得10
13秒前
可意完成签到,获得积分20
14秒前
酷波er应助joleisalau采纳,获得30
14秒前
chloe完成签到,获得积分10
16秒前
18秒前
panpan关注了科研通微信公众号
19秒前
19秒前
21秒前
Hello应助没有名字行不行采纳,获得10
22秒前
可意发布了新的文献求助20
23秒前
。。发布了新的文献求助10
24秒前
嗯哼发布了新的文献求助10
24秒前
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461239
求助须知:如何正确求助?哪些是违规求助? 3054973
关于积分的说明 9045828
捐赠科研通 2744888
什么是DOI,文献DOI怎么找? 1505722
科研通“疑难数据库(出版商)”最低求助积分说明 695812
邀请新用户注册赠送积分活动 695233