亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence-enhanced MRI-based preoperative staging in patients with endometrial cancer

医学 子宫内膜癌 放射科 肿瘤科 普通外科 癌症 内科学
作者
Lise Lecointre,Julia Alekseenko,Matteo Pavone,Alexandros Karargyris,Francesco Fanfani,Anna Fagotti,Giovanni Scambia,Denis Querleu,Chérif Akladios,Jérémy Dana,Nicolas Padoy
出处
期刊:International Journal of Gynecological Cancer [BMJ]
卷期号:35 (1): 100017-100017
标识
DOI:10.1016/j.ijgc.2024.100017
摘要

Evaluation of prognostic factors is crucial in patients with endometrial cancer for optimal treatment planning and prognosis assessment. This study proposes a deep learning pipeline for tumor and uterus segmentation from magnetic resonance imaging (MRI) images to predict deep myometrial invasion and cervical stroma invasion and thus assist clinicians in pre-operative workups. Two experts consensually reviewed the MRIs and assessed myometrial invasion and cervical stromal invasion as per the International Federation of Gynecology and Obstetrics staging classification, to compare the diagnostic performance of the model with the radiologic consensus. The deep learning method was trained using sagittal T2-weighted images from 142 patients and tested with a 3-fold stratified test with 36 patients in each fold. Our solution is based on a segmentation module, which employed a 2-stage pipeline for efficient uterus in the whole MRI volume and then tumor segmentation in the uterus predicted region of interest. A total of 178 patients were included. For deep myometrial invasion prediction, the model achieved an average balanced test accuracy over 3-folds of 0.702, while experts reached an average accuracy of 0.769. For cervical stroma invasion prediction, our model demonstrated an average balanced accuracy of 0.721 on the 3-fold test set, while experts achieved an average balanced accuracy of 0.859. Additionally, the accuracy rates for uterus and tumor segmentation, measured by the Dice score, were 0.847 and 0.579 respectively. Despite the current challenges posed by variations in data, class imbalance, and the presence of artifacts, our fully automatic approach holds great promise in supporting in pre-operative staging. Moreover, it demonstrated a robust capability to segment key regions of interest, specifically the uterus and tumors, highlighting the positive impact our solution can bring to health care imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
读研霹雳完成签到 ,获得积分10
5秒前
兔兔大王完成签到,获得积分10
17秒前
19秒前
兔兔大王发布了新的文献求助10
22秒前
Fuaget发布了新的文献求助10
24秒前
Fuaget完成签到,获得积分10
36秒前
ding应助XIUXIU采纳,获得10
2分钟前
2分钟前
小小宝发布了新的文献求助10
2分钟前
2分钟前
XIUXIU发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
4分钟前
濮阳灵竹完成签到,获得积分10
4分钟前
Linden_bd完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
科研通AI6应助XMH采纳,获得30
5分钟前
Gryff完成签到 ,获得积分10
6分钟前
breeze完成签到,获得积分10
6分钟前
Rn完成签到 ,获得积分10
6分钟前
稚久完成签到,获得积分20
7分钟前
CodeCraft应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
8分钟前
8分钟前
李小猫完成签到,获得积分10
8分钟前
zsmj23完成签到 ,获得积分0
8分钟前
李小猫发布了新的文献求助10
8分钟前
9分钟前
从容芮应助难过的踏歌采纳,获得30
9分钟前
稚久发布了新的文献求助10
9分钟前
李志全完成签到 ,获得积分10
10分钟前
10分钟前
10分钟前
量子星尘发布了新的文献求助10
10分钟前
AliEmbark完成签到,获得积分10
10分钟前
10分钟前
搞怪的白云完成签到 ,获得积分10
11分钟前
Zhaowx完成签到,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5245506
求助须知:如何正确求助?哪些是违规求助? 4410898
关于积分的说明 13728817
捐赠科研通 4281197
什么是DOI,文献DOI怎么找? 2349022
邀请新用户注册赠送积分活动 1346131
关于科研通互助平台的介绍 1304938