Enhanced Interfacial Polarization Loss of FeS/MoS2@N‐Doped Carbon Sandwich‐Walled Nanotubes Enables High‐Performance Electromagnetic Wave Absorption

材料科学 碳纳米管 兴奋剂 极化(电化学) 吸收(声学) 光电子学 纳米技术 复合材料 物理化学 化学
作者
Yu Shen,Ziqian Ma,Feng Yan,Chunling Zhu,Xitian Zhang,Yujin Chen
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202423947
摘要

Abstract Multiple interfaces and hollow structures are vital to high‐performance electromagnetic wave (EMW) absorption of absorbers. However, it remains difficult to construct and tune such structures, and there is limited understanding regarding the relationships between their structural and dielectric loss properties. Herein, the theoretical simulations for the EMW absorption performance of the hollow sandwich and solid double‐layer structures are first carried out and it is found that the former exhibits a more pronounced power loss density than the latter. Then, a ligand‐exchange strategy following a vulcanization process to fabricate FeS/MoS 2 @N‐doped carbon sandwich‐walled nanotubes (FeMoS‐SWCNTs) is dveloped. The experimental results demonstrate that the FeMoS‐SWCNTs show significantly enhanced EMW absorption performance compared to the solid FeS counterparts, consistent with the simulation results. Further density functional theory calculations reveal that the enhanced dielectric properties of FeMoS‐SWCNTs are attributed to a stronger interfacial polarization resulting from electronic interactions at multiple interfaces (FeS/N‐doped carbon (NC), MoS 2 /NC, and FeS/MoS 2 ), and enhanced conduction loss caused by higher density of states in the FeS/MoS 2 heterostructure. These findings elucidate the relationship between the sandwich‐walled nanotube structures and their dielectric loss properties, and the developed method offers a feasible approach for the rational design of sandwich‐walled nanotubes for high‐performance EMW absorption applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
姜彦乔完成签到 ,获得积分10
2秒前
hehe完成签到,获得积分10
2秒前
Hello应助单薄的书琴采纳,获得10
3秒前
天天快乐应助KX2024采纳,获得10
3秒前
传奇3应助我爱蓝胖子采纳,获得10
3秒前
3秒前
细心秀发发布了新的文献求助10
3秒前
Heidi完成签到,获得积分10
3秒前
今后应助老大采纳,获得10
4秒前
5秒前
5秒前
5秒前
jdh发布了新的文献求助10
6秒前
章鱼完成签到,获得积分10
8秒前
dadadasds完成签到,获得积分20
8秒前
jay完成签到,获得积分10
8秒前
万卓玛发布了新的文献求助30
8秒前
suolonglong发布了新的文献求助10
8秒前
巴拉巴拉完成签到,获得积分20
9秒前
10秒前
10秒前
申申发布了新的文献求助10
10秒前
要减肥冥发布了新的文献求助30
11秒前
Booiys完成签到,获得积分10
11秒前
11秒前
穆思柔完成签到,获得积分10
12秒前
12秒前
13秒前
CTCseven完成签到,获得积分10
14秒前
14秒前
言午完成签到,获得积分10
14秒前
李健应助壮观以松采纳,获得10
15秒前
15秒前
15秒前
15秒前
汉堡包应助明亮的元柏采纳,获得10
16秒前
祥子完成签到,获得积分10
16秒前
17秒前
17秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3408760
求助须知:如何正确求助?哪些是违规求助? 3012783
关于积分的说明 8855749
捐赠科研通 2700062
什么是DOI,文献DOI怎么找? 1480218
科研通“疑难数据库(出版商)”最低求助积分说明 684244
邀请新用户注册赠送积分活动 678567