Prediction of Equipment Remaining Useful Life Based on Graph Learning and Spatiotemporal Knowledge Graph

计算机科学 图形 联营 数据挖掘 知识图 人工智能 机器学习 先验概率 理论计算机科学 贝叶斯概率
作者
Changhao Men,Yu Han,Cheng‐Geng Huang
出处
期刊:Quality and Reliability Engineering International [Wiley]
标识
DOI:10.1002/qre.3713
摘要

ABSTRACT As equipment structures and functionalities become more complex, ensuring safety and reliability has become increasingly critical. Hence, accurately predicting the remaining useful life (RUL) of equipment has gained significant importance. Recent advances in graph learning have contributed significantly to RUL prediction by leveraging monitoring signals to extract temporal features and build predictive models. However, a key challenge persists: structured prior knowledge that describes the spatiotemporal correlations between monitoring data and equipment structure is often lacking, and relational priors are not effectively incorporated in the modeling process. To address these challenges, this paper proposes a spatiotemporal knowledge graph (STKG) modeling method for equipment, combined with a graph‐based spatiotemporal feature learning algorithm for RUL prediction. The main contributions of this work are as follows: (1) The STKG models the hierarchical relationships among equipment, sensor signals, and state transitions across both spatial and temporal dimensions; (2) A graph attention convolution‐pooling network, incorporating relational priors, is proposed to extract spatial features from the STKG at different time points, constructing spatial graph aggregation mappings; (3) The informer network is employed to capture temporal decay patterns, generating cross‐time and sensor graph representations for RUL prediction. The proposed method is validated on a public dataset, demonstrating superior performance compared to existing models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lbb关注了科研通微信公众号
1秒前
情怀应助Calvin采纳,获得10
1秒前
光崽是谁发布了新的文献求助10
1秒前
1秒前
Flex完成签到 ,获得积分10
3秒前
莫离完成签到,获得积分10
3秒前
HAP发布了新的文献求助10
3秒前
4秒前
yao发布了新的文献求助10
4秒前
xzy998发布了新的文献求助10
5秒前
5秒前
CodeCraft应助王蕊采纳,获得10
5秒前
hai完成签到,获得积分10
6秒前
7秒前
yx发布了新的文献求助10
9秒前
乐乐应助CHB只争朝夕采纳,获得10
9秒前
Tin发布了新的文献求助10
9秒前
yao完成签到,获得积分20
10秒前
12秒前
12秒前
12秒前
13秒前
14秒前
HAP完成签到,获得积分10
15秒前
依霏完成签到,获得积分10
16秒前
跳跃毒娘发布了新的文献求助30
17秒前
端庄新烟发布了新的文献求助10
17秒前
王蕊发布了新的文献求助10
18秒前
望着拥有完成签到,获得积分10
19秒前
xzy998发布了新的文献求助10
20秒前
20秒前
20秒前
Sylvia发布了新的文献求助10
20秒前
Zj发布了新的文献求助10
20秒前
月光取暖完成签到,获得积分10
22秒前
来日可追应助虎虎虎采纳,获得20
23秒前
ok完成签到,获得积分20
24秒前
风中少年发布了新的文献求助10
24秒前
24秒前
Slu发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3573869
求助须知:如何正确求助?哪些是违规求助? 3143673
关于积分的说明 9453528
捐赠科研通 2845319
什么是DOI,文献DOI怎么找? 1564178
邀请新用户注册赠送积分活动 732133
科研通“疑难数据库(出版商)”最低求助积分说明 718929