Structural Variation Interpretation in the Genome Sequencing Era: Lessons from Cytogenetics

细胞遗传学 结构变异 口译(哲学) 基因组 计算生物学 生物 变化(天文学) 遗传学 进化生物学 染色体 基因 哲学 语言学 物理 天体物理学
作者
Lucilla Pizzo,M. Katharine Rudd
出处
期刊:Clinical Chemistry [Oxford University Press]
卷期号:71 (1): 119-128
标识
DOI:10.1093/clinchem/hvae186
摘要

Abstract Background Structural variation (SV), defined as balanced and unbalanced chromosomal rearrangements >1 kb, is a major contributor to germline and neoplastic disease. Large variants have historically been evaluated by chromosome analysis and now are commonly recognized by chromosomal microarray analysis (CMA). The increasing application of genome sequencing (GS) in the clinic and the relatively high incidence of chromosomal abnormalities in sick newborns and children highlights the need for accurate SV interpretation and reporting. In this review, we describe SV patterns of common cytogenetic abnormalities for laboratorians who review GS data. Content GS has the potential to detect diverse chromosomal abnormalities and sequence breakpoint junctions to clarify variant structure. No single GS analysis pipeline can detect all SV, and visualization of sequence data is crucial to recognize specific patterns. Here we describe genomic signatures of translocations, inverted duplications adjacent to terminal deletions, recombinant chromosomes, marker chromosomes, ring chromosomes, isodicentric and isochromosomes, and mosaic aneuploidy. Distinguishing these more complex abnormalities from simple deletions and duplications is critical for phenotypic interpretation and recurrence risk recommendations. Summary Unlike single-nucleotide variant calling, identification of chromosome rearrangements by GS requires further processing and multiple callers. SV databases have caveats and limitations depending on the platform (CMA vs sequencing) and resolution (exome vs genome). In the rapidly evolving era of clinical genomics, where a single test can identify both sequence and structural variants, optimal patient care stems from the integration of molecular and cytogenetic expertise.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
lili发布了新的文献求助10
1秒前
zxp完成签到 ,获得积分10
2秒前
2秒前
张先生发布了新的文献求助10
3秒前
11完成签到 ,获得积分10
4秒前
Candy发布了新的文献求助10
5秒前
nenoaowu发布了新的文献求助10
6秒前
6秒前
爆米花应助Su采纳,获得10
6秒前
8秒前
junlin完成签到 ,获得积分10
9秒前
王宗廷发布了新的文献求助30
9秒前
充电宝应助nenoaowu采纳,获得10
9秒前
深情安青应助Jyuanh采纳,获得10
9秒前
九澄发布了新的文献求助10
11秒前
xue完成签到,获得积分10
12秒前
12秒前
12秒前
刘欣美子完成签到,获得积分20
14秒前
15秒前
万能图书馆应助Friday采纳,获得10
15秒前
花菜炒肉发布了新的文献求助10
15秒前
李爱国应助失眠觅云采纳,获得100
16秒前
16秒前
流星完成签到,获得积分10
16秒前
17秒前
18秒前
fqk完成签到,获得积分10
19秒前
20秒前
21秒前
可爱的函函应助苏翰英采纳,获得10
21秒前
21秒前
感动的醉波完成签到,获得积分10
22秒前
yujiu发布了新的文献求助30
22秒前
华仔应助ldj6670采纳,获得10
22秒前
善学以致用应助夏侯德东采纳,获得30
25秒前
啥也做不出来的小谭完成签到,获得积分10
26秒前
77seven发布了新的文献求助10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307009
求助须知:如何正确求助?哪些是违规求助? 2940878
关于积分的说明 8498950
捐赠科研通 2614965
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663478
邀请新用户注册赠送积分活动 648318