Defect‐Engineered Biomimetic Piezoelectric Nanocomposites With Enhanced ROS Production, Macrophage Re‐polarization, and Ca2+ Channel Activation for Therapy of MRSA‐Infected Wounds and Osteomyelitis

纳米复合材料 巨噬细胞极化 材料科学 骨髓炎 压电 极化(电化学) 巨噬细胞 纳米技术 生物物理学 化学 医学 复合材料 免疫学 生物 生物化学 体外 物理化学
作者
Shubham Roy,Shaohua Wang,Zia Ullah,Huiyao Hao,Renhao Xu,Jhilik Roy,Tingting Gong,Ikram Hasan,Weilin Jiang,Menglong Li,Dheeraj Mondal,Jihong Li,Jian Jin,Yinghe Zhang,Wujiong Xia,Bing Guo
出处
期刊:Small [Wiley]
被引量:5
标识
DOI:10.1002/smll.202411906
摘要

Antibiotic-resistant bacteria often cause lethal infections in both the surficial and deep organs of humans. Failure of antibiotics in resistant infections leads to more effective alternative therapies, like spatiotemporally controllable piezodynamic therapy (PZDT) with deep penetration. Currently, PZDT demands further investigation for improved treatment outcomes and the corresponding therapeutic mechanisms. Herein, a nanocomposite cloaked is reported with a biomimetic coating of TLR-upregulated macrophage membrane for targeted PZDT against MRSA-induced skin wound infection and osteomyelitis, representing surficial and deep infection models, respectively. To boost the therapeutic efficacy, crystal defect engineering is applied by impregnating Fe2+ into bismuth oxy-iodide nanosheets to increase the crystal defects. This results in a significantly higher piezoelectric coefficient than in previous reports, contributing to an amplified reactive oxygen species generation for bacterial killing. More importantly, the notable piezoelectric effect not only re-programs the macrophages into an anti-inflammatory M2 phenotype for accelerating bacterial wound healing but also stimulates the opening of the piezo-stimulated Ca2+ channels and boosts the differentiation of mesenchymal stem cells into osteoblasts for expediting bone tissue repair in osteomyelitis model. Moreover, the Fe-doping supplements T2-magnetic resonance imaging for real-time visualization of nanocomposite distribution. This theranostic system opens a new avenue for future treatment of drug-resistant bacteria-caused diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陆山菡完成签到,获得积分10
1秒前
百忠完成签到,获得积分10
1秒前
顺利的曼寒完成签到 ,获得积分10
1秒前
2秒前
Ssyong完成签到 ,获得积分10
2秒前
金铭完成签到,获得积分10
2秒前
义气的碧玉完成签到,获得积分10
3秒前
是一整个圆完成签到,获得积分10
3秒前
kkkkkk发布了新的文献求助10
3秒前
田様应助Kingzd采纳,获得10
3秒前
tamaco完成签到,获得积分10
3秒前
君临完成签到,获得积分10
4秒前
zink发布了新的文献求助10
4秒前
1111完成签到,获得积分10
4秒前
4秒前
斯文败类应助冬瓜熊采纳,获得10
5秒前
12wsesd完成签到 ,获得积分10
5秒前
乐乐完成签到,获得积分10
6秒前
6秒前
西柚完成签到,获得积分10
6秒前
和谐的映秋应助wulin314采纳,获得20
6秒前
uniquelin完成签到,获得积分10
6秒前
张庭豪完成签到,获得积分10
7秒前
wanci应助点点白帆采纳,获得10
7秒前
123发布了新的文献求助10
8秒前
9秒前
黄景瀚完成签到,获得积分10
9秒前
wangerer完成签到,获得积分10
10秒前
10秒前
婷小胖完成签到,获得积分10
10秒前
Junzhuo Zhou发布了新的文献求助20
10秒前
luping发布了新的文献求助20
10秒前
wing完成签到 ,获得积分10
10秒前
10秒前
dingbeicn完成签到,获得积分10
11秒前
包容昊强完成签到,获得积分10
11秒前
XXX发布了新的文献求助10
11秒前
11秒前
上官若男应助Even采纳,获得10
11秒前
一一完成签到,获得积分20
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950365
求助须知:如何正确求助?哪些是违规求助? 3495846
关于积分的说明 11078987
捐赠科研通 3226245
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800926