纳米晶材料
材料科学
微晶
立方氧化锆
钪
溅射沉积
相(物质)
薄膜
化学工程
粒度
立方晶系
分析化学(期刊)
溅射
纳米技术
结晶学
冶金
陶瓷
化学
有机化学
工程类
作者
V. V. Danchuk,M. Shatalov,Michael Zinigrad,Alexey Kossenko,Tamara Brider,Luc H. Le,Dustin Johnson,Yuri M. Strzhemechny,Albina Musin
出处
期刊:Nanomaterials
[Multidisciplinary Digital Publishing Institute]
日期:2024-04-18
卷期号:14 (8): 708-708
被引量:2
摘要
The cubic zirconia (ZrO2) is attractive for a broad range of applications. However, at room temperature, the cubic phase needs to be stabilized. The most studied stabilization method is the addition of the oxides of trivalent metals, such as Sc2O3. Another method is the stabilization of the cubic phase in nanostructures—nanopowders or nanocrystallites of pure zirconia. We studied the relationship between the size factor and the dopant concentration range for the formation and stabilization of the cubic phase in scandium-stabilized zirconia (ScSZ) films. The thin films of (ZrO2)1−x(Sc2O3)x, with x from 0 to 0.2, were deposited on room-temperature substrates by reactive direct current magnetron co-sputtering. The crystal structure of films with an average crystallite size of 85 Å was cubic at Sc2O3 content from 6.5 to 17.5 mol%, which is much broader than the range of 8–12 mol.% of the conventional deposition methods. The sputtering of ScSZ films on hot substrates resulted in a doubling of crystallite size and a decrease in the cubic phase range to 7.4–11 mol% of Sc2O3 content. This confirmed that the size of crystallites is one of the determining factors for expanding the concentration range for forming and stabilizing the cubic phase of ScSZ films.
科研通智能强力驱动
Strongly Powered by AbleSci AI