清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep representation learning for clustering longitudinal survival data from electronic health records

健康档案 聚类分析 纵向数据 代表(政治) 人工智能 深度学习 计算机科学 数据科学 电子健康档案 数据挖掘 政治学 医疗保健 政治 法学
作者
Jiajun Qiu,Yao Hu,Frank Li,A. Mesut Erzurumluoglu,Ingrid Brænne,Charles E. Whitehurst,Jochen Schmitz,Johann de Jong
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4283823/v1
摘要

Abstract Precision medicine can be defined as providing the right treatment to the right patient at the right time, and it requires the ability to identify clinically relevant patient subgroups with high accuracy. The increasing availability of large-scale longitudinal electronic health records (EHR) datasets has provided major opportunities for artificial intelligence and machine learning in mining such complex datasets for identifying novel disease subtypes. However, disease subtypes often exist in the context of certain disease-relevant risk events, and current efforts have been limited by stratifying patients either only by disease trajectory or only by event risk, largely ignoring the interactions between the two, which can result in subgroups that still display great heterogeneity in event risk and/or underlying molecular mechanisms. To capture such interactions, novel methods are needed that allow for clustering patients simultaneously by disease trajectory and event risk, To address this current gap in the literature, we developed TransVarSur (Transformer Variational Survival modeling). TransVarSur integrates a Transformer-based Gaussian mixture variational autoencoder with time-to-event modeling to capture complex relationships between cluster-specific EHR trajectories and survival times. We validated TransVarSur by showing superior performance relative to a range of baseline methods that either ignore longitudinality or the interactions between disease trajectories and event risk, on both synthetic and real-world benchmark datasets with known ground-truth clustering. We then applied TransVarSur to 1908 Crohn's disease patients from the UK Biobank and successfully identified four clusters displaying both divergent EHR trajectories and divergent progression towards the risk event intestinal obstruction. A further analysis of the clusters revealed known clinical and genetic factors relevant in Crohn's disease and progression to intestinal obstruction. In conclusion, we demonstrated TransVarSur’s ability to disentangle interactions between disease trajectories and risk events to more accurately stratify a patient population into clinically and genetically relevant subgroups. Hence, it can be a powerful tool in the development of precision medicine approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
wowser完成签到,获得积分10
32秒前
Yolenders完成签到 ,获得积分10
36秒前
tufei完成签到,获得积分10
43秒前
1分钟前
积极的中蓝完成签到 ,获得积分10
1分钟前
1分钟前
Alex-Song完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
Owen应助坚强的云朵采纳,获得10
1分钟前
Axs完成签到,获得积分10
1分钟前
badgerwithfisher完成签到,获得积分10
1分钟前
游01完成签到 ,获得积分10
1分钟前
lovexa完成签到,获得积分10
1分钟前
感性的神级完成签到,获得积分10
2分钟前
斯寜应助钱念波采纳,获得10
2分钟前
2分钟前
Archers完成签到 ,获得积分10
2分钟前
2分钟前
Yolo完成签到 ,获得积分10
2分钟前
木南完成签到 ,获得积分10
2分钟前
zijingsy完成签到 ,获得积分10
2分钟前
傅三毒完成签到 ,获得积分10
2分钟前
牛大力发布了新的文献求助20
2分钟前
艺霖大王完成签到 ,获得积分10
3分钟前
稳重傲晴完成签到 ,获得积分10
3分钟前
HHW完成签到 ,获得积分10
3分钟前
00完成签到 ,获得积分10
3分钟前
徐涛完成签到 ,获得积分10
3分钟前
斯寜应助钱念波采纳,获得10
3分钟前
搜集达人应助谨慎的擎宇采纳,获得10
3分钟前
3分钟前
奔跑的青霉素完成签到 ,获得积分10
4分钟前
钱念波完成签到,获得积分10
4分钟前
xiaowuge完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
风趣的靖雁完成签到 ,获得积分10
4分钟前
gyigvljhuo发布了新的文献求助10
4分钟前
高分求助中
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 350
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
《上海道契1-30卷(1847—1911)》 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3705035
求助须知:如何正确求助?哪些是违规求助? 3254385
关于积分的说明 9888552
捐赠科研通 2966139
什么是DOI,文献DOI怎么找? 1626744
邀请新用户注册赠送积分活动 771150
科研通“疑难数据库(出版商)”最低求助积分说明 743190