Fault Diagnosis for Wind Turbine Flange Bolts Based on One-Dimensional Depthwise Separable Convolutions

轮缘 断层(地质) 涡轮机 可分离空间 结构工程 计算机科学 螺母和螺栓 地质学 工程类 数学 机械工程 数学分析 地震学
作者
Yongchao Liu,Shuqing Dong,Qingfeng Wang,Wenhe Cai,Ruizhuo Song,Qinglai Wei
出处
期刊:International Journal of Intelligent Control and Systems
标识
DOI:10.62678/ijics202403.10111
摘要

In this paper, a new bolt fault diagnosis method is developed to solve the fault diagnosis problem of wind turbine flange bolts using one-dimensional depthwise separable convolutions. The main idea is to use a one-dimensional convolutional neural network model to classify and identify the acoustic vibration signals of bolts, which represent different bolt damage states. Through the method of knock test and modal simulation, it is concluded that the damage state of wind turbine flange bolt is related to the natural frequency distribution of acoustic vibration signal. It is found that the bolt damage state affects the modal shape of the structure, and then affects the natural frequency distribution of the bolt vibration signal. Therefore, the damage state can be identified by identifying the natural frequency distribution of the bolt acoustic vibration signal. In the present one-dimensional depth-detachable convolutional neural network model, the one-dimensional vector is first convolved into multiple channels, and then each channel is separately learned by depth-detachable convolution, which can effectively improve the feature quality and the effect of data classification. From the perspective of the realization mechanism of convolution operation, the depthwise separable convolution operation has fewer parameters and faster computing speed, making it easier to build lightweight models and deploy them to mobile devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助一颗大白菜采纳,获得10
刚刚
zhull应助四叶草采纳,获得10
1秒前
哭泣的翠丝完成签到,获得积分10
2秒前
Lucas应助梁凯华采纳,获得10
3秒前
sxy关闭了sxy文献求助
4秒前
李健的小迷弟应助纤维素采纳,获得10
4秒前
2025alex完成签到,获得积分10
4秒前
7秒前
科研通AI2S应助Suen采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
19秒前
dinghaifeng应助科研通管家采纳,获得10
19秒前
dinghaifeng应助科研通管家采纳,获得10
19秒前
djiwisksk66应助科研通管家采纳,获得10
19秒前
上官若男应助科研通管家采纳,获得10
19秒前
温冰雪应助科研通管家采纳,获得10
19秒前
ED应助科研通管家采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
温冰雪应助科研通管家采纳,获得10
20秒前
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
20秒前
令狐初之发布了新的文献求助10
21秒前
慶1完成签到,获得积分10
21秒前
lzh353512377发布了新的文献求助10
21秒前
Inory007发布了新的文献求助10
22秒前
zhuazhua完成签到 ,获得积分10
22秒前
小蜻蜓发布了新的文献求助30
23秒前
健壮的怜烟应助西柚采纳,获得20
23秒前
23秒前
zym999999发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
25秒前
26秒前
Zkxxxx应助荷子采纳,获得10
27秒前
呵呵完成签到 ,获得积分10
29秒前
令狐初之完成签到,获得积分10
29秒前
小蜜峰儿完成签到 ,获得积分10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958068
求助须知:如何正确求助?哪些是违规求助? 3504219
关于积分的说明 11117555
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788351
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511