Fault Diagnosis for Wind Turbine Flange Bolts Based on One-Dimensional Depthwise Separable Convolutions

轮缘 断层(地质) 涡轮机 可分离空间 结构工程 计算机科学 螺母和螺栓 地质学 工程类 数学 机械工程 数学分析 地震学
作者
Yongchao Liu,Shuqing Dong,Qingfeng Wang,Wenhe Cai,Ruizhuo Song,Qinglai Wei
出处
期刊:International Journal of Intelligent Control and Systems
标识
DOI:10.62678/ijics202403.10111
摘要

In this paper, a new bolt fault diagnosis method is developed to solve the fault diagnosis problem of wind turbine flange bolts using one-dimensional depthwise separable convolutions. The main idea is to use a one-dimensional convolutional neural network model to classify and identify the acoustic vibration signals of bolts, which represent different bolt damage states. Through the method of knock test and modal simulation, it is concluded that the damage state of wind turbine flange bolt is related to the natural frequency distribution of acoustic vibration signal. It is found that the bolt damage state affects the modal shape of the structure, and then affects the natural frequency distribution of the bolt vibration signal. Therefore, the damage state can be identified by identifying the natural frequency distribution of the bolt acoustic vibration signal. In the present one-dimensional depth-detachable convolutional neural network model, the one-dimensional vector is first convolved into multiple channels, and then each channel is separately learned by depth-detachable convolution, which can effectively improve the feature quality and the effect of data classification. From the perspective of the realization mechanism of convolution operation, the depthwise separable convolution operation has fewer parameters and faster computing speed, making it easier to build lightweight models and deploy them to mobile devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圣晟胜发布了新的文献求助10
刚刚
大个应助科研通管家采纳,获得10
刚刚
刚刚
田様应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
Leif应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
shouyu29应助科研通管家采纳,获得10
1秒前
1秒前
小金应助科研通管家采纳,获得20
1秒前
牛逼的昂完成签到,获得积分10
1秒前
muzi给muzi的求助进行了留言
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
1秒前
Jasper应助科研通管家采纳,获得10
2秒前
yuhang完成签到 ,获得积分10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
果汁完成签到,获得积分10
2秒前
NexusExplorer应助Zoe采纳,获得10
2秒前
MADKAI发布了新的文献求助10
3秒前
3秒前
领导范儿应助junzilan采纳,获得10
4秒前
打打应助激动的一手采纳,获得10
4秒前
酷波er应助艺玲采纳,获得10
5秒前
longtengfei发布了新的文献求助10
5秒前
6秒前
6秒前
ZL发布了新的文献求助10
8秒前
luca发布了新的文献求助10
8秒前
ruby发布了新的文献求助10
8秒前
沉静的颦发布了新的文献求助10
9秒前
9秒前
cjy完成签到,获得积分10
9秒前
9秒前
10秒前
Zoe完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759