Triple-task mutual consistency for semi-supervised 3D medical image segmentation

计算机科学 人工智能 分割 正规化(语言学) 体素 模式识别(心理学) 聚类分析 深度学习 任务(项目管理) 一致性(知识库) 机器学习 管理 经济
作者
Yantao Chen,Yong Ma,Xiaoguang Mei,Lin Zhang,Zhigang Fu,Jiayi Ma
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:: 108506-108506
标识
DOI:10.1016/j.compbiomed.2024.108506
摘要

Semi-supervised deep learning algorithm is an effective means of medical image segmentation. Among these methods, multi-task learning with consistency regularization has achieved outstanding results. However, most of the existing methods usually simply embed the Signed Distance Map (SDM) task into the network, which underestimates the potential ability of SDM in edge awareness and leads to excessive dependence between tasks. In this work, we propose a novel triple-task mutual consistency (TTMC) framework to enhance shape and edge awareness capabilities, and overcome the task dependence problem underestimated in previous work. Specifically, we innovatively construct the Signed Attention Map (SAM), a novel fusion image with attention mechanism, and use it as an auxiliary task for segmentation to enhance the edge awareness ability. Then we implement a triple-task deep network, which jointly predicts the voxel-wise classification map, the Signed Distance Map and the Signed Attention Map. In our proposed framework, an optimized differentiable transformation layer associates SDM with voxel-wise classification map and SAM prediction, while task-level consistency regularization utilizes unlabeled data in an unsupervised manner. Evaluated on the public Left Atrium dataset and NIH Pancreas dataset, our proposed framework achieves significant performance gains by effectively utilizing unlabeled data, outperforming recent state-of-the-art semi-supervised segmentation methods. Code is available at https://github.com/Saocent/TTMC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
yinqueshi发布了新的文献求助10
2秒前
积极的连虎完成签到,获得积分10
3秒前
小蘑菇应助彩色的过客采纳,获得10
3秒前
3秒前
4秒前
小静发布了新的文献求助10
4秒前
zhang完成签到,获得积分20
4秒前
冯世嘉发布了新的文献求助30
4秒前
冷静的盼烟完成签到,获得积分10
4秒前
4秒前
Liolsy发布了新的文献求助10
5秒前
5秒前
5秒前
子春完成签到 ,获得积分10
6秒前
SMOONNY发布了新的文献求助10
6秒前
suzy发布了新的文献求助10
6秒前
younghippo发布了新的文献求助10
6秒前
kyxb给kyxb的求助进行了留言
7秒前
机灵迎海完成签到,获得积分10
7秒前
7秒前
无奈完成签到 ,获得积分10
7秒前
无聊的伊发布了新的文献求助10
8秒前
aillonm完成签到,获得积分20
8秒前
年轻半雪完成签到,获得积分10
8秒前
wyx完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
马特发布了新的文献求助10
10秒前
10秒前
无花果应助Lee采纳,获得10
10秒前
10秒前
六金发布了新的文献求助10
11秒前
12秒前
尖尖发布了新的文献求助10
12秒前
背后的傥完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950635
求助须知:如何正确求助?哪些是违规求助? 3496094
关于积分的说明 11080521
捐赠科研通 3226507
什么是DOI,文献DOI怎么找? 1783918
邀请新用户注册赠送积分活动 867946
科研通“疑难数据库(出版商)”最低求助积分说明 800993