Triple-task mutual consistency for semi-supervised 3D medical image segmentation

计算机科学 人工智能 分割 正规化(语言学) 体素 模式识别(心理学) 聚类分析 深度学习 任务(项目管理) 一致性(知识库) 机器学习 经济 管理
作者
Yantao Chen,Yong Ma,Xiaoguang Mei,Lin Zhang,Zhigang Fu,Jiayi Ma
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:: 108506-108506
标识
DOI:10.1016/j.compbiomed.2024.108506
摘要

Semi-supervised deep learning algorithm is an effective means of medical image segmentation. Among these methods, multi-task learning with consistency regularization has achieved outstanding results. However, most of the existing methods usually simply embed the Signed Distance Map (SDM) task into the network, which underestimates the potential ability of SDM in edge awareness and leads to excessive dependence between tasks. In this work, we propose a novel triple-task mutual consistency (TTMC) framework to enhance shape and edge awareness capabilities, and overcome the task dependence problem underestimated in previous work. Specifically, we innovatively construct the Signed Attention Map (SAM), a novel fusion image with attention mechanism, and use it as an auxiliary task for segmentation to enhance the edge awareness ability. Then we implement a triple-task deep network, which jointly predicts the voxel-wise classification map, the Signed Distance Map and the Signed Attention Map. In our proposed framework, an optimized differentiable transformation layer associates SDM with voxel-wise classification map and SAM prediction, while task-level consistency regularization utilizes unlabeled data in an unsupervised manner. Evaluated on the public Left Atrium dataset and NIH Pancreas dataset, our proposed framework achieves significant performance gains by effectively utilizing unlabeled data, outperforming recent state-of-the-art semi-supervised segmentation methods. Code is available at https://github.com/Saocent/TTMC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cst发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
调皮定帮完成签到 ,获得积分10
1秒前
1秒前
1秒前
1秒前
sunryaes完成签到 ,获得积分10
2秒前
虚幻君浩发布了新的文献求助10
2秒前
von发布了新的文献求助30
3秒前
科研豆发布了新的文献求助10
3秒前
科研通AI6应助dawei采纳,获得10
4秒前
慕青应助WYH采纳,获得10
4秒前
小徐发布了新的文献求助10
4秒前
刻苦冰颜完成签到,获得积分20
4秒前
汉堡包应助xdf00采纳,获得10
5秒前
5秒前
WQR发布了新的文献求助10
5秒前
5秒前
零李晃晃发布了新的文献求助10
5秒前
feiline发布了新的文献求助10
5秒前
科研通AI6应助kids采纳,获得10
6秒前
6秒前
6秒前
云朵完成签到 ,获得积分20
7秒前
7秒前
7秒前
边缘发布了新的文献求助10
8秒前
哈哈悦发布了新的文献求助10
8秒前
Zhongyu发布了新的文献求助10
9秒前
9秒前
隐形曼青应助小蚊子采纳,获得10
9秒前
9秒前
科研通AI2S应助小李采纳,获得10
9秒前
9秒前
Roxxane发布了新的文献求助10
9秒前
伍志伟完成签到,获得积分10
10秒前
兰先生发布了新的文献求助10
10秒前
kk发布了新的文献求助10
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588003
求助须知:如何正确求助?哪些是违规求助? 4671093
关于积分的说明 14785596
捐赠科研通 4624167
什么是DOI,文献DOI怎么找? 2531527
邀请新用户注册赠送积分活动 1500191
关于科研通互助平台的介绍 1468200