Triple-task mutual consistency for semi-supervised 3D medical image segmentation

计算机科学 人工智能 分割 正规化(语言学) 体素 模式识别(心理学) 聚类分析 深度学习 任务(项目管理) 一致性(知识库) 机器学习 管理 经济
作者
Yantao Chen,Yong Ma,Xiaoguang Mei,Lin Zhang,Zhigang Fu,Jiayi Ma
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:: 108506-108506
标识
DOI:10.1016/j.compbiomed.2024.108506
摘要

Semi-supervised deep learning algorithm is an effective means of medical image segmentation. Among these methods, multi-task learning with consistency regularization has achieved outstanding results. However, most of the existing methods usually simply embed the Signed Distance Map (SDM) task into the network, which underestimates the potential ability of SDM in edge awareness and leads to excessive dependence between tasks. In this work, we propose a novel triple-task mutual consistency (TTMC) framework to enhance shape and edge awareness capabilities, and overcome the task dependence problem underestimated in previous work. Specifically, we innovatively construct the Signed Attention Map (SAM), a novel fusion image with attention mechanism, and use it as an auxiliary task for segmentation to enhance the edge awareness ability. Then we implement a triple-task deep network, which jointly predicts the voxel-wise classification map, the Signed Distance Map and the Signed Attention Map. In our proposed framework, an optimized differentiable transformation layer associates SDM with voxel-wise classification map and SAM prediction, while task-level consistency regularization utilizes unlabeled data in an unsupervised manner. Evaluated on the public Left Atrium dataset and NIH Pancreas dataset, our proposed framework achieves significant performance gains by effectively utilizing unlabeled data, outperforming recent state-of-the-art semi-supervised segmentation methods. Code is available at https://github.com/Saocent/TTMC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
Hello应助活力的初之采纳,获得10
2秒前
素和姣姣发布了新的文献求助10
2秒前
思源应助Kevin Huang采纳,获得10
2秒前
荣浩宇发布了新的文献求助10
3秒前
3秒前
gejingshu发布了新的文献求助10
3秒前
hk1900发布了新的文献求助10
4秒前
4秒前
GWT发布了新的文献求助10
4秒前
觉得太贵发布了新的文献求助10
5秒前
Wzh完成签到,获得积分10
5秒前
Jiang_Hwan发布了新的文献求助10
6秒前
6秒前
情怀应助薛华倩采纳,获得10
7秒前
Hodge应助liwai采纳,获得10
7秒前
wsgdhz发布了新的文献求助10
7秒前
ran123456发布了新的文献求助30
7秒前
科研人一枚完成签到,获得积分20
8秒前
小姚姚发布了新的文献求助50
8秒前
8秒前
废寝忘食发布了新的文献求助30
8秒前
bingbing完成签到 ,获得积分10
9秒前
10秒前
哈哈完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
Oops完成签到,获得积分20
13秒前
277应助外向的忆霜采纳,获得10
13秒前
13秒前
加菲丰丰举报求助违规成功
13秒前
勤劳的芳举报求助违规成功
13秒前
Yziii举报求助违规成功
13秒前
13秒前
香蕉觅云应助万松辉采纳,获得10
14秒前
14秒前
简因完成签到 ,获得积分10
14秒前
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301397
求助须知:如何正确求助?哪些是违规求助? 2936097
关于积分的说明 8476096
捐赠科研通 2609905
什么是DOI,文献DOI怎么找? 1424910
科研通“疑难数据库(出版商)”最低求助积分说明 662206
邀请新用户注册赠送积分活动 646213