Analysis of the LatticeNet neural network framework’s performance using prediction-calculated temperature coefficients in PWR assemblies

人工神经网络 计算机科学 核工程 材料科学 统计 数学 人工智能 工程类
作者
Aidan Furlong,Justin Watson
出处
期刊:Annals of Nuclear Energy [Elsevier BV]
卷期号:203: 110498-110498
标识
DOI:10.1016/j.anucene.2024.110498
摘要

Various Machine Learning (ML) techniques have seen recent and growing interest in the creation of surrogate neutronics models as a potential way to avoid the computational expenses associated with conventional high-fidelity modeling. Artificial Neural Networks (ANNs) have been shown to be particularly useful for single-assembly predictions involving pin-wise power distributions and multiplication factors. In this paper, the LatticeNet neural network framework is investigated as a method to predict Doppler and moderator temperature coefficients for Pressurized Water Reactor (PWR) fuel assemblies, as well as differential boron worth. This approach uses the built-in tools developed alongside LatticeNet to construct two fully-connected network architectures capable of predicting k-eigenvalues from two inputs such as fuel enrichment and temperature when trained with data generated with CASMO-4E. A single network taking in all study parameters as inputs was then used to predict k-eigenvalues for fuel temperature, moderator temperature, and boron perturbation cases. The calculated temperature coefficients and differential boron worth values were compared with a bank of reference values to validate the efficacy of this method. Overall, differences in k-eigenvalues were within 0.017% in the worst case. The temperature coefficients saw mean errors of 1.85% and 1.69% for the two-parameter networks, respectively. The all-parameter network was then shown to predict 1100 points in 236 ms compared to the 4.95 min CASMO-4E took to generate them. Additionally, the differential boron worth achieved the lowest mean error of 0.30%; each of these values were within our acceptance criteria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lili完成签到,获得积分10
刚刚
思源应助wink采纳,获得10
1秒前
Lucas应助Ray采纳,获得10
2秒前
司空晋鹏发布了新的文献求助10
2秒前
2秒前
edward完成签到,获得积分10
3秒前
怡心亭完成签到,获得积分10
3秒前
3秒前
明理晓霜发布了新的文献求助10
4秒前
水晶李完成签到 ,获得积分10
5秒前
1278day完成签到,获得积分10
5秒前
小小二完成签到,获得积分10
5秒前
科目三应助wxl19采纳,获得10
6秒前
6秒前
小冬腊月发布了新的文献求助10
7秒前
金碧河完成签到,获得积分10
7秒前
8秒前
888完成签到,获得积分10
8秒前
8秒前
大个应助咖飞采纳,获得10
10秒前
VV完成签到,获得积分20
10秒前
丘比特应助明理晓霜采纳,获得10
10秒前
11秒前
11秒前
KKK发布了新的文献求助10
11秒前
Petrichor发布了新的文献求助10
13秒前
钰钰儿完成签到,获得积分10
13秒前
思与省完成签到,获得积分10
16秒前
俊逸凌雪发布了新的文献求助10
16秒前
16秒前
一烟尘发布了新的文献求助30
17秒前
朱朱发布了新的文献求助10
17秒前
小颜儿发布了新的文献求助10
17秒前
QS发布了新的文献求助20
18秒前
18秒前
外向的砖家完成签到 ,获得积分10
19秒前
十八鱼应助Petrichor采纳,获得10
20秒前
eric888应助mts23xs采纳,获得200
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295297
求助须知:如何正确求助?哪些是违规求助? 4444855
关于积分的说明 13834820
捐赠科研通 4329178
什么是DOI,文献DOI怎么找? 2376556
邀请新用户注册赠送积分活动 1371823
关于科研通互助平台的介绍 1337080