Analysis of the LatticeNet neural network framework’s performance using prediction-calculated temperature coefficients in PWR assemblies

人工神经网络 计算机科学 核工程 材料科学 统计 数学 人工智能 工程类
作者
Aidan Furlong,Justin Watson
出处
期刊:Annals of Nuclear Energy [Elsevier BV]
卷期号:203: 110498-110498
标识
DOI:10.1016/j.anucene.2024.110498
摘要

Various Machine Learning (ML) techniques have seen recent and growing interest in the creation of surrogate neutronics models as a potential way to avoid the computational expenses associated with conventional high-fidelity modeling. Artificial Neural Networks (ANNs) have been shown to be particularly useful for single-assembly predictions involving pin-wise power distributions and multiplication factors. In this paper, the LatticeNet neural network framework is investigated as a method to predict Doppler and moderator temperature coefficients for Pressurized Water Reactor (PWR) fuel assemblies, as well as differential boron worth. This approach uses the built-in tools developed alongside LatticeNet to construct two fully-connected network architectures capable of predicting k-eigenvalues from two inputs such as fuel enrichment and temperature when trained with data generated with CASMO-4E. A single network taking in all study parameters as inputs was then used to predict k-eigenvalues for fuel temperature, moderator temperature, and boron perturbation cases. The calculated temperature coefficients and differential boron worth values were compared with a bank of reference values to validate the efficacy of this method. Overall, differences in k-eigenvalues were within 0.017% in the worst case. The temperature coefficients saw mean errors of 1.85% and 1.69% for the two-parameter networks, respectively. The all-parameter network was then shown to predict 1100 points in 236 ms compared to the 4.95 min CASMO-4E took to generate them. Additionally, the differential boron worth achieved the lowest mean error of 0.30%; each of these values were within our acceptance criteria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lllm发布了新的文献求助10
刚刚
娜娜果完成签到,获得积分20
1秒前
1秒前
tianzhen发布了新的文献求助10
1秒前
啦啦啦喽完成签到,获得积分10
1秒前
张凯完成签到,获得积分10
2秒前
2秒前
上官若男应助嘻嘻采纳,获得10
2秒前
炙热萝完成签到,获得积分10
2秒前
FashionBoy应助kassidy采纳,获得10
2秒前
xixi完成签到,获得积分10
3秒前
Wuli蕊亲故完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
luqiu完成签到,获得积分10
3秒前
单薄的黎昕完成签到,获得积分10
3秒前
大模型应助三水采纳,获得10
4秒前
=Q发布了新的文献求助10
4秒前
4秒前
5秒前
pp完成签到 ,获得积分10
5秒前
大模型应助csl采纳,获得10
6秒前
6秒前
7秒前
小卡发布了新的文献求助10
8秒前
SilentStorm完成签到,获得积分10
8秒前
Queen发布了新的文献求助10
8秒前
9秒前
and999发布了新的文献求助10
9秒前
李健应助阜睿采纳,获得10
9秒前
周一发布了新的文献求助10
9秒前
十四应助js采纳,获得10
9秒前
今后应助humaning采纳,获得10
9秒前
1111发布了新的文献求助10
10秒前
ruanruan完成签到,获得积分10
10秒前
11秒前
小小发布了新的文献求助10
11秒前
Bean发布了新的文献求助10
11秒前
FashionBoy应助汪汪采纳,获得10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009487
求助须知:如何正确求助?哪些是违规求助? 3549466
关于积分的说明 11302335
捐赠科研通 3284069
什么是DOI,文献DOI怎么找? 1810464
邀请新用户注册赠送积分活动 886301
科研通“疑难数据库(出版商)”最低求助积分说明 811339