Analysis of the LatticeNet neural network framework’s performance using prediction-calculated temperature coefficients in PWR assemblies

人工神经网络 计算机科学 核工程 材料科学 统计 数学 人工智能 工程类
作者
Aidan Furlong,Justin Watson
出处
期刊:Annals of Nuclear Energy [Elsevier]
卷期号:203: 110498-110498
标识
DOI:10.1016/j.anucene.2024.110498
摘要

Various Machine Learning (ML) techniques have seen recent and growing interest in the creation of surrogate neutronics models as a potential way to avoid the computational expenses associated with conventional high-fidelity modeling. Artificial Neural Networks (ANNs) have been shown to be particularly useful for single-assembly predictions involving pin-wise power distributions and multiplication factors. In this paper, the LatticeNet neural network framework is investigated as a method to predict Doppler and moderator temperature coefficients for Pressurized Water Reactor (PWR) fuel assemblies, as well as differential boron worth. This approach uses the built-in tools developed alongside LatticeNet to construct two fully-connected network architectures capable of predicting k-eigenvalues from two inputs such as fuel enrichment and temperature when trained with data generated with CASMO-4E. A single network taking in all study parameters as inputs was then used to predict k-eigenvalues for fuel temperature, moderator temperature, and boron perturbation cases. The calculated temperature coefficients and differential boron worth values were compared with a bank of reference values to validate the efficacy of this method. Overall, differences in k-eigenvalues were within 0.017% in the worst case. The temperature coefficients saw mean errors of 1.85% and 1.69% for the two-parameter networks, respectively. The all-parameter network was then shown to predict 1100 points in 236 ms compared to the 4.95 min CASMO-4E took to generate them. Additionally, the differential boron worth achieved the lowest mean error of 0.30%; each of these values were within our acceptance criteria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗柚子完成签到,获得积分10
刚刚
abc完成签到 ,获得积分10
刚刚
PMX发布了新的文献求助10
1秒前
标致小伙发布了新的文献求助10
1秒前
joysa完成签到,获得积分10
1秒前
131343完成签到,获得积分10
1秒前
FashionBoy应助慕子采纳,获得10
2秒前
2秒前
2秒前
L龙发布了新的文献求助10
3秒前
3秒前
善学以致用应助sunwending采纳,获得10
3秒前
东郭秋凌完成签到,获得积分10
3秒前
胤宸完成签到,获得积分10
4秒前
5秒前
5秒前
hohokuz完成签到,获得积分20
5秒前
一切顺遂应助Adian采纳,获得100
5秒前
5秒前
April发布了新的文献求助20
6秒前
Huaiman发布了新的文献求助10
7秒前
科研通AI5应助转角一起走采纳,获得20
7秒前
蛋炒饭完成签到,获得积分10
8秒前
执着完成签到,获得积分10
8秒前
研友_ED5GK发布了新的文献求助10
8秒前
9秒前
绿麦盲区完成签到,获得积分10
9秒前
Yvonne发布了新的文献求助10
9秒前
10秒前
10秒前
minghanl完成签到,获得积分10
11秒前
zhaomr发布了新的文献求助10
11秒前
科目三应助pbf采纳,获得20
12秒前
12秒前
12秒前
same完成签到,获得积分10
13秒前
科研通AI5应助俭朴夜雪采纳,获得30
13秒前
读研好难发布了新的文献求助10
14秒前
Adian完成签到,获得积分10
15秒前
Huaiman完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762