亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting ion mobility collision cross sections and assessing prediction variation by combining conventional and data driven modeling

化学 等压法 航程(航空) 碰撞 分析物 生物系统 排名(信息检索) 数据挖掘 机器学习 计算机科学 色谱法 热力学 生物 物理 复合材料 材料科学 计算机安全
作者
Robbin Bouwmeester,Keith Richardson,Richard Denny,Ian D. Wilson,Sven Degroeve,Lennart Martens,Johannes P.C. Vissers
出处
期刊:Talanta [Elsevier]
卷期号:274: 125970-125970 被引量:2
标识
DOI:10.1016/j.talanta.2024.125970
摘要

The use of collision cross section (CCS) values derived from ion mobility studies is proving to be an increasingly important tool in the characterization and identification of molecules detected in complex mixtures. Here, a novel machine learning (ML) based method for predicting CCS integrating both molecular modeling (MM) and ML methodologies has been devised and shown to be able to accurately predict CCS values for singly charged small molecular weight molecules from a broad range of chemical classes. The model performed favorably compared to existing models, improving compound identifications for isobaric analytes in terms of ranking and assigning identification probability values to the annotation. Furthermore, charge localization was seen to be correlated with CCS prediction accuracy, with gas-phase proton affinity demonstrating the potential to provide a proxy for prediction error based on chemical structural properties. The presented approach and findings represent a further step towards accurate prediction and application of computationally generated CCS values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有风的地方完成签到 ,获得积分10
2秒前
10秒前
ffddsdc发布了新的文献求助10
17秒前
超级灰狼完成签到 ,获得积分10
19秒前
Kristopher完成签到 ,获得积分10
21秒前
36秒前
SKY发布了新的文献求助30
43秒前
胖胖猪完成签到,获得积分10
45秒前
nini完成签到,获得积分10
48秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
ffddsdc完成签到,获得积分10
1分钟前
Xiaoping完成签到 ,获得积分10
1分钟前
只如初完成签到 ,获得积分10
1分钟前
Ecokarster完成签到,获得积分10
1分钟前
顾矜应助lly采纳,获得10
1分钟前
yuki完成签到 ,获得积分10
2分钟前
2分钟前
哲别发布了新的文献求助10
2分钟前
搜集达人应助哲别采纳,获得10
2分钟前
sdshi发布了新的文献求助10
2分钟前
LJY完成签到 ,获得积分10
2分钟前
郭志晟完成签到 ,获得积分10
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
ZXneuro完成签到,获得积分10
2分钟前
liuliu完成签到,获得积分20
2分钟前
2分钟前
研友_5Y9775发布了新的文献求助10
3分钟前
123321完成签到 ,获得积分10
3分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584621
求助须知:如何正确求助?哪些是违规求助? 4668381
关于积分的说明 14771387
捐赠科研通 4611679
什么是DOI,文献DOI怎么找? 2530052
邀请新用户注册赠送积分活动 1498980
关于科研通互助平台的介绍 1467448