亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Zero-Shot Attribute Consistent Model for Bearing Fault Diagnosis Under Unknown Domain

断层(地质) 零(语言学) 方位(导航) 领域(数学分析) 弹丸 计算机科学 算法 模式识别(心理学) 人工智能 数学 材料科学 数学分析 地质学 地震学 冶金 语言学 哲学
作者
Yi Qin,Wang Lv,Quan Qian,Yongfang Mao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-11 被引量:3
标识
DOI:10.1109/tim.2024.3378256
摘要

Existing bearing fault diagnosis methods based on deep learning typically rely on a large amount of labeled data for training. However, acquisition of a large amount of labeled target data in practical engineering is challenging. A zero-shot attribute consistent (ZSAC) model is proposed in this study to address this issue. This diagnostic model only requires data from the known domain and does not require any data from the unknown domain during training. A fine-grained attribute description matrix is first constructed according to the various single fault types and fault impulse characteristics of bearing in this study, and it can be used to diagnose the faults in the unknown domain. A wide hybrid dilated convolutional neural network is designed for feature extraction, which can obtain more information with fewer parameters and provide more effective features for attribute classification than the existing convolutional neural networks. An attribute consistency loss is proposed to bridge the relationship between attributes and features in the known domain. This approach can effectively avoid attribute misclassification and improve diagnostic accuracy. The performance of ZSAC model is examined using two bearing datasets. Test results show that the proposed ZSAC model can effectively diagnose the single and compound faults of bearings under the unknown working condition and have advantages over other typical zero-shot learning and transfer learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小送发布了新的文献求助10
刚刚
4秒前
xinjiasuki完成签到 ,获得积分10
8秒前
12秒前
16秒前
GS关闭了GS文献求助
17秒前
尖峰山车神完成签到,获得积分10
19秒前
Milton_z完成签到 ,获得积分10
20秒前
宇宙发布了新的文献求助10
21秒前
23秒前
37秒前
小送完成签到,获得积分10
39秒前
1L发布了新的文献求助10
42秒前
星辰大海应助1L采纳,获得10
48秒前
五位数完成签到,获得积分10
49秒前
bkagyin应助白华苍松采纳,获得10
50秒前
上官若男应助宇宙采纳,获得10
51秒前
GS发布了新的文献求助10
55秒前
fa完成签到,获得积分10
1分钟前
1分钟前
叮叮车完成签到 ,获得积分10
1分钟前
丘比特应助袅袅采纳,获得10
1分钟前
老实皮卡丘完成签到 ,获得积分10
1分钟前
1分钟前
袅袅发布了新的文献求助10
1分钟前
2分钟前
2分钟前
小蘑菇应助花火采纳,获得10
2分钟前
GS发布了新的文献求助10
2分钟前
WR完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Owen应助duoduoqian采纳,获得30
2分钟前
小马甲应助老实的鞋垫采纳,获得10
2分钟前
花火发布了新的文献求助10
2分钟前
觉得太贵完成签到 ,获得积分10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
Hello应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538964
求助须知:如何正确求助?哪些是违规求助? 3116613
关于积分的说明 9326209
捐赠科研通 2814607
什么是DOI,文献DOI怎么找? 1546895
邀请新用户注册赠送积分活动 720671
科研通“疑难数据库(出版商)”最低求助积分说明 712145