亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BAF-Net: bidirectional attention-aware fluid pyramid feature integrated multimodal fusion network for diagnosis and prognosis

棱锥(几何) 特征(语言学) 人工智能 融合 一般化 计算机科学 骨干网 模式识别(心理学) 情态动词 图像融合 图像(数学) 数学 化学 数学分析 高分子化学 哲学 几何学 语言学 计算机网络
作者
Huiqin Wu,Lihong Peng,Dongyang Du,Hui Xu,Guoyu Lin,Zidong Zhou,Lijun Lu,Wenbing Lv
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (10): 105007-105007 被引量:1
标识
DOI:10.1088/1361-6560/ad3cb2
摘要

Abstract Objective . To go beyond the deficiencies of the three conventional multimodal fusion strategies (i.e. input-, feature- and output-level fusion), we propose a bidirectional attention-aware fluid pyramid feature integrated fusion network (BAF-Net) with cross-modal interactions for multimodal medical image diagnosis and prognosis. Approach . BAF-Net is composed of two identical branches to preserve the unimodal features and one bidirectional attention-aware distillation stream to progressively assimilate cross-modal complements and to learn supplementary features in both bottom-up and top-down processes. Fluid pyramid connections were adopted to integrate the hierarchical features at different levels of the network, and channel-wise attention modules were exploited to mitigate cross-modal cross-level incompatibility. Furthermore, depth-wise separable convolution was introduced to fuse the cross-modal cross-level features to alleviate the increase in parameters to a great extent. The generalization abilities of BAF-Net were evaluated in terms of two clinical tasks: (1) an in-house PET-CT dataset with 174 patients for differentiation between lung cancer and pulmonary tuberculosis. (2) A public multicenter PET-CT head and neck cancer dataset with 800 patients from nine centers for overall survival prediction. Main results . On the LC-PTB dataset, improved performance was found in BAF-Net (AUC = 0.7342) compared with input-level fusion model (AUC = 0.6825; p < 0.05), feature-level fusion model (AUC = 0.6968; p = 0.0547), output-level fusion model (AUC = 0.7011; p < 0.05). On the H&N cancer dataset, BAF-Net (C-index = 0.7241) outperformed the input-, feature-, and output-level fusion model, with 2.95%, 3.77%, and 1.52% increments of C-index ( p = 0.3336, 0.0479 and 0.2911, respectively). The ablation experiments demonstrated the effectiveness of all the designed modules regarding all the evaluated metrics in both datasets. Significance . Extensive experiments on two datasets demonstrated better performance and robustness of BAF-Net than three conventional fusion strategies and PET or CT unimodal network in terms of diagnosis and prognosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LHC完成签到,获得积分10
4秒前
23333完成签到 ,获得积分10
21秒前
26秒前
44秒前
46秒前
fishbig发布了新的文献求助10
51秒前
fishbig完成签到,获得积分10
55秒前
shhoing应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
1分钟前
NattyPoe完成签到,获得积分10
1分钟前
1分钟前
1分钟前
pencil123完成签到,获得积分10
1分钟前
CRUSADER完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
笨笨的怜雪完成签到 ,获得积分10
2分钟前
cc发布了新的文献求助10
2分钟前
nojego完成签到,获得积分10
2分钟前
2分钟前
2分钟前
cc发布了新的文献求助10
2分钟前
2分钟前
2分钟前
情怀应助大福采纳,获得10
2分钟前
2分钟前
cc完成签到,获得积分20
2分钟前
zhangyuanyue1234完成签到,获得积分10
2分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
善学以致用应助shennie采纳,获得10
3分钟前
JOKER完成签到 ,获得积分10
3分钟前
3分钟前
大福发布了新的文献求助10
3分钟前
大福完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538710
求助须知:如何正确求助?哪些是违规求助? 4625763
关于积分的说明 14596830
捐赠科研通 4566417
什么是DOI,文献DOI怎么找? 2503302
邀请新用户注册赠送积分活动 1481395
关于科研通互助平台的介绍 1452763