BAF-Net: bidirectional attention-aware fluid pyramid feature integrated multimodal fusion network for diagnosis and prognosis

棱锥(几何) 特征(语言学) 人工智能 融合 一般化 计算机科学 骨干网 模式识别(心理学) 情态动词 图像融合 图像(数学) 数学 化学 哲学 语言学 几何学 数学分析 计算机网络 高分子化学
作者
Hongle Wu,Lihong Peng,Dongyang Du,Hui Xu,Guiping Lin,Zidong Zhou,Lijun Lu,Wenbing Lv
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (10): 105007-105007
标识
DOI:10.1088/1361-6560/ad3cb2
摘要

Objective. To go beyond the deficiencies of the three conventional multimodal fusion strategies (i.e. input-, feature- and output-level fusion), we propose a bidirectional attention-aware fluid pyramid feature integrated fusion network (BAF-Net) with cross-modal interactions for multimodal medical image diagnosis and prognosis.Approach. BAF-Net is composed of two identical branches to preserve the unimodal features and one bidirectional attention-aware distillation stream to progressively assimilate cross-modal complements and to learn supplementary features in both bottom-up and top-down processes. Fluid pyramid connections were adopted to integrate the hierarchical features at different levels of the network, and channel-wise attention modules were exploited to mitigate cross-modal cross-level incompatibility. Furthermore, depth-wise separable convolution was introduced to fuse the cross-modal cross-level features to alleviate the increase in parameters to a great extent. The generalization abilities of BAF-Net were evaluated in terms of two clinical tasks: (1) an in-house PET-CT dataset with 174 patients for differentiation between lung cancer and pulmonary tuberculosis. (2) A public multicenter PET-CT head and neck cancer dataset with 800 patients from nine centers for overall survival prediction.Main results. On the LC-PTB dataset, improved performance was found in BAF-Net (AUC = 0.7342) compared with input-level fusion model (AUC = 0.6825;p< 0.05), feature-level fusion model (AUC = 0.6968;p= 0.0547), output-level fusion model (AUC = 0.7011;p< 0.05). On the H&N cancer dataset, BAF-Net (C-index = 0.7241) outperformed the input-, feature-, and output-level fusion model, with 2.95%, 3.77%, and 1.52% increments of C-index (p= 0.3336, 0.0479 and 0.2911, respectively). The ablation experiments demonstrated the effectiveness of all the designed modules regarding all the evaluated metrics in both datasets.Significance. Extensive experiments on two datasets demonstrated better performance and robustness of BAF-Net than three conventional fusion strategies and PET or CT unimodal network in terms of diagnosis and prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热冰夏完成签到,获得积分10
刚刚
iNk应助兴奋汽车采纳,获得10
1秒前
共享精神应助kingwhitewing采纳,获得10
1秒前
1秒前
暖若安阳完成签到,获得积分20
1秒前
糕糕完成签到,获得积分10
1秒前
屈绮兰发布了新的文献求助50
1秒前
绵绵发布了新的文献求助10
2秒前
周亭完成签到,获得积分10
2秒前
2秒前
3秒前
科研顺利毕业顺利工作顺利完成签到,获得积分20
4秒前
隐形机器猫完成签到,获得积分20
4秒前
bjx完成签到,获得积分20
5秒前
5秒前
5秒前
Jasper应助西瓜采纳,获得10
5秒前
lily完成签到,获得积分10
6秒前
愉快冰淇淋完成签到,获得积分10
6秒前
6秒前
天真的和现实的电影家完成签到,获得积分10
7秒前
111完成签到,获得积分10
8秒前
大力的契完成签到,获得积分10
8秒前
8秒前
QQ完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
上官若男应助嘟嘟采纳,获得10
9秒前
晨雨完成签到,获得积分10
10秒前
张志顺完成签到,获得积分10
10秒前
tyhg完成签到,获得积分10
10秒前
无辜洋葱发布了新的文献求助10
10秒前
ape完成签到,获得积分20
10秒前
马保国123发布了新的文献求助10
11秒前
归海紫翠完成签到,获得积分10
11秒前
11秒前
岑夜南完成签到,获得积分10
11秒前
uniphoton完成签到,获得积分10
11秒前
FashionBoy应助zzznznnn采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762