BAF-Net: bidirectional attention-aware fluid pyramid feature integrated multimodal fusion network for diagnosis and prognosis

棱锥(几何) 特征(语言学) 人工智能 融合 一般化 计算机科学 骨干网 模式识别(心理学) 情态动词 图像融合 图像(数学) 数学 化学 数学分析 高分子化学 哲学 几何学 语言学 计算机网络
作者
Huiqin Wu,Lihong Peng,Dongyang Du,Hui Xu,Guoyu Lin,Zidong Zhou,Lijun Lu,Wenbing Lv
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (10): 105007-105007 被引量:1
标识
DOI:10.1088/1361-6560/ad3cb2
摘要

Abstract Objective . To go beyond the deficiencies of the three conventional multimodal fusion strategies (i.e. input-, feature- and output-level fusion), we propose a bidirectional attention-aware fluid pyramid feature integrated fusion network (BAF-Net) with cross-modal interactions for multimodal medical image diagnosis and prognosis. Approach . BAF-Net is composed of two identical branches to preserve the unimodal features and one bidirectional attention-aware distillation stream to progressively assimilate cross-modal complements and to learn supplementary features in both bottom-up and top-down processes. Fluid pyramid connections were adopted to integrate the hierarchical features at different levels of the network, and channel-wise attention modules were exploited to mitigate cross-modal cross-level incompatibility. Furthermore, depth-wise separable convolution was introduced to fuse the cross-modal cross-level features to alleviate the increase in parameters to a great extent. The generalization abilities of BAF-Net were evaluated in terms of two clinical tasks: (1) an in-house PET-CT dataset with 174 patients for differentiation between lung cancer and pulmonary tuberculosis. (2) A public multicenter PET-CT head and neck cancer dataset with 800 patients from nine centers for overall survival prediction. Main results . On the LC-PTB dataset, improved performance was found in BAF-Net (AUC = 0.7342) compared with input-level fusion model (AUC = 0.6825; p < 0.05), feature-level fusion model (AUC = 0.6968; p = 0.0547), output-level fusion model (AUC = 0.7011; p < 0.05). On the H&N cancer dataset, BAF-Net (C-index = 0.7241) outperformed the input-, feature-, and output-level fusion model, with 2.95%, 3.77%, and 1.52% increments of C-index ( p = 0.3336, 0.0479 and 0.2911, respectively). The ablation experiments demonstrated the effectiveness of all the designed modules regarding all the evaluated metrics in both datasets. Significance . Extensive experiments on two datasets demonstrated better performance and robustness of BAF-Net than three conventional fusion strategies and PET or CT unimodal network in terms of diagnosis and prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yao发布了新的文献求助10
1秒前
聪明的宛菡完成签到,获得积分10
1秒前
感动水杯完成签到 ,获得积分10
1秒前
U9A完成签到,获得积分10
3秒前
大智若愚骨头完成签到,获得积分10
4秒前
科研go完成签到,获得积分10
5秒前
柠檬杨完成签到,获得积分10
6秒前
沉静问芙完成签到 ,获得积分10
6秒前
6秒前
酷酷的贝总完成签到,获得积分10
7秒前
房东家的猫完成签到,获得积分10
8秒前
邹佳林完成签到,获得积分10
12秒前
落霞与孤鹜齐飞完成签到,获得积分10
12秒前
12秒前
研究牲exe完成签到,获得积分10
13秒前
小杭76应助zeng采纳,获得10
13秒前
14秒前
科研圣体完成签到,获得积分10
14秒前
yn完成签到 ,获得积分10
14秒前
15秒前
李大侠完成签到,获得积分10
16秒前
专一的访文完成签到 ,获得积分10
16秒前
XS_QI完成签到 ,获得积分10
20秒前
20秒前
gg完成签到,获得积分10
21秒前
jos完成签到,获得积分10
22秒前
车厘子完成签到 ,获得积分10
25秒前
刘富宇完成签到 ,获得积分10
25秒前
研友_85YNe8发布了新的文献求助30
26秒前
FYX完成签到 ,获得积分10
30秒前
Atlantis完成签到,获得积分10
31秒前
小杭76应助zeng采纳,获得10
32秒前
脆皮小小酥完成签到 ,获得积分10
34秒前
suwan发布了新的文献求助10
35秒前
大方百招完成签到,获得积分10
35秒前
sophia完成签到 ,获得积分0
36秒前
LY0430完成签到 ,获得积分10
36秒前
滕皓轩发布了新的文献求助50
39秒前
40秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294096
求助须知:如何正确求助?哪些是违规求助? 4444039
关于积分的说明 13832022
捐赠科研通 4328044
什么是DOI,文献DOI怎么找? 2375902
邀请新用户注册赠送积分活动 1371202
关于科研通互助平台的介绍 1336276