棱锥(几何)
特征(语言学)
人工智能
融合
一般化
计算机科学
骨干网
模式识别(心理学)
情态动词
图像融合
图像(数学)
数学
化学
数学分析
高分子化学
哲学
几何学
语言学
计算机网络
作者
Hongle Wu,Lihong Peng,Dongyang Du,Hui Xu,Guiping Lin,Zidong Zhou,Lijun Lu,Wenbing Lv
标识
DOI:10.1088/1361-6560/ad3cb2
摘要
Objective. To go beyond the deficiencies of the three conventional multimodal fusion strategies (i.e. input-, feature- and output-level fusion), we propose a bidirectional attention-aware fluid pyramid feature integrated fusion network (BAF-Net) with cross-modal interactions for multimodal medical image diagnosis and prognosis.Approach. BAF-Net is composed of two identical branches to preserve the unimodal features and one bidirectional attention-aware distillation stream to progressively assimilate cross-modal complements and to learn supplementary features in both bottom-up and top-down processes. Fluid pyramid connections were adopted to integrate the hierarchical features at different levels of the network, and channel-wise attention modules were exploited to mitigate cross-modal cross-level incompatibility. Furthermore, depth-wise separable convolution was introduced to fuse the cross-modal cross-level features to alleviate the increase in parameters to a great extent. The generalization abilities of BAF-Net were evaluated in terms of two clinical tasks: (1) an in-house PET-CT dataset with 174 patients for differentiation between lung cancer and pulmonary tuberculosis. (2) A public multicenter PET-CT head and neck cancer dataset with 800 patients from nine centers for overall survival prediction.Main results. On the LC-PTB dataset, improved performance was found in BAF-Net (AUC = 0.7342) compared with input-level fusion model (AUC = 0.6825;p< 0.05), feature-level fusion model (AUC = 0.6968;p= 0.0547), output-level fusion model (AUC = 0.7011;p< 0.05). On the H&N cancer dataset, BAF-Net (C-index = 0.7241) outperformed the input-, feature-, and output-level fusion model, with 2.95%, 3.77%, and 1.52% increments of C-index (p= 0.3336, 0.0479 and 0.2911, respectively). The ablation experiments demonstrated the effectiveness of all the designed modules regarding all the evaluated metrics in both datasets.Significance. Extensive experiments on two datasets demonstrated better performance and robustness of BAF-Net than three conventional fusion strategies and PET or CT unimodal network in terms of diagnosis and prognosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI