BAF-Net: bidirectional attention-aware fluid pyramid feature integrated multimodal fusion network for diagnosis and prognosis

棱锥(几何) 特征(语言学) 人工智能 融合 一般化 计算机科学 骨干网 模式识别(心理学) 情态动词 图像融合 图像(数学) 数学 化学 哲学 语言学 几何学 数学分析 计算机网络 高分子化学
作者
Huiqin Wu,Lihong Peng,Dongyang Du,Hui Xu,Guoyu Lin,Zidong Zhou,Lijun Lu,Wenbing Lv
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (10): 105007-105007 被引量:1
标识
DOI:10.1088/1361-6560/ad3cb2
摘要

Abstract Objective . To go beyond the deficiencies of the three conventional multimodal fusion strategies (i.e. input-, feature- and output-level fusion), we propose a bidirectional attention-aware fluid pyramid feature integrated fusion network (BAF-Net) with cross-modal interactions for multimodal medical image diagnosis and prognosis. Approach . BAF-Net is composed of two identical branches to preserve the unimodal features and one bidirectional attention-aware distillation stream to progressively assimilate cross-modal complements and to learn supplementary features in both bottom-up and top-down processes. Fluid pyramid connections were adopted to integrate the hierarchical features at different levels of the network, and channel-wise attention modules were exploited to mitigate cross-modal cross-level incompatibility. Furthermore, depth-wise separable convolution was introduced to fuse the cross-modal cross-level features to alleviate the increase in parameters to a great extent. The generalization abilities of BAF-Net were evaluated in terms of two clinical tasks: (1) an in-house PET-CT dataset with 174 patients for differentiation between lung cancer and pulmonary tuberculosis. (2) A public multicenter PET-CT head and neck cancer dataset with 800 patients from nine centers for overall survival prediction. Main results . On the LC-PTB dataset, improved performance was found in BAF-Net (AUC = 0.7342) compared with input-level fusion model (AUC = 0.6825; p < 0.05), feature-level fusion model (AUC = 0.6968; p = 0.0547), output-level fusion model (AUC = 0.7011; p < 0.05). On the H&N cancer dataset, BAF-Net (C-index = 0.7241) outperformed the input-, feature-, and output-level fusion model, with 2.95%, 3.77%, and 1.52% increments of C-index ( p = 0.3336, 0.0479 and 0.2911, respectively). The ablation experiments demonstrated the effectiveness of all the designed modules regarding all the evaluated metrics in both datasets. Significance . Extensive experiments on two datasets demonstrated better performance and robustness of BAF-Net than three conventional fusion strategies and PET or CT unimodal network in terms of diagnosis and prognosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
慕青应助摇粒绒采纳,获得20
1秒前
肥仔龙发布了新的文献求助10
1秒前
谦让觅风发布了新的文献求助10
1秒前
hbpu230701发布了新的文献求助10
1秒前
2秒前
Lucas应助xaaowang采纳,获得30
3秒前
cjjwei完成签到 ,获得积分10
3秒前
赵心心发布了新的文献求助10
6秒前
lijing123发布了新的文献求助10
6秒前
7秒前
不一样的烟火完成签到 ,获得积分10
7秒前
激昂的问玉完成签到,获得积分10
7秒前
源圈圈发布了新的文献求助10
7秒前
8秒前
8秒前
久念完成签到,获得积分10
9秒前
Akim应助谦让觅风采纳,获得10
9秒前
9秒前
许女士完成签到,获得积分10
10秒前
安详的梨愁完成签到,获得积分10
10秒前
pluto应助我有一件隐身衣采纳,获得10
10秒前
鱼遇完成签到,获得积分10
10秒前
Akim应助陈美宏采纳,获得10
12秒前
久念发布了新的文献求助10
12秒前
华仔应助keal采纳,获得10
13秒前
xxzw完成签到 ,获得积分10
14秒前
子鹤完成签到,获得积分10
14秒前
gab发布了新的文献求助10
14秒前
科目三应助oyx53采纳,获得10
14秒前
15秒前
云墨完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助30
16秒前
16秒前
16秒前
orixero应助feishi采纳,获得10
17秒前
17秒前
17秒前
18秒前
hbpu230701发布了新的文献求助10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749224
求助须知:如何正确求助?哪些是违规求助? 5456884
关于积分的说明 15362980
捐赠科研通 4888661
什么是DOI,文献DOI怎么找? 2628626
邀请新用户注册赠送积分活动 1576952
关于科研通互助平台的介绍 1533670