清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

BAF-Net: bidirectional attention-aware fluid pyramid feature integrated multimodal fusion network for diagnosis and prognosis

棱锥(几何) 特征(语言学) 人工智能 融合 一般化 计算机科学 骨干网 模式识别(心理学) 情态动词 图像融合 图像(数学) 数学 化学 数学分析 高分子化学 哲学 几何学 语言学 计算机网络
作者
Huiqin Wu,Lihong Peng,Dongyang Du,Hui Xu,Guoyu Lin,Zidong Zhou,Lijun Lu,Wenbing Lv
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (10): 105007-105007 被引量:1
标识
DOI:10.1088/1361-6560/ad3cb2
摘要

Abstract Objective . To go beyond the deficiencies of the three conventional multimodal fusion strategies (i.e. input-, feature- and output-level fusion), we propose a bidirectional attention-aware fluid pyramid feature integrated fusion network (BAF-Net) with cross-modal interactions for multimodal medical image diagnosis and prognosis. Approach . BAF-Net is composed of two identical branches to preserve the unimodal features and one bidirectional attention-aware distillation stream to progressively assimilate cross-modal complements and to learn supplementary features in both bottom-up and top-down processes. Fluid pyramid connections were adopted to integrate the hierarchical features at different levels of the network, and channel-wise attention modules were exploited to mitigate cross-modal cross-level incompatibility. Furthermore, depth-wise separable convolution was introduced to fuse the cross-modal cross-level features to alleviate the increase in parameters to a great extent. The generalization abilities of BAF-Net were evaluated in terms of two clinical tasks: (1) an in-house PET-CT dataset with 174 patients for differentiation between lung cancer and pulmonary tuberculosis. (2) A public multicenter PET-CT head and neck cancer dataset with 800 patients from nine centers for overall survival prediction. Main results . On the LC-PTB dataset, improved performance was found in BAF-Net (AUC = 0.7342) compared with input-level fusion model (AUC = 0.6825; p < 0.05), feature-level fusion model (AUC = 0.6968; p = 0.0547), output-level fusion model (AUC = 0.7011; p < 0.05). On the H&N cancer dataset, BAF-Net (C-index = 0.7241) outperformed the input-, feature-, and output-level fusion model, with 2.95%, 3.77%, and 1.52% increments of C-index ( p = 0.3336, 0.0479 and 0.2911, respectively). The ablation experiments demonstrated the effectiveness of all the designed modules regarding all the evaluated metrics in both datasets. Significance . Extensive experiments on two datasets demonstrated better performance and robustness of BAF-Net than three conventional fusion strategies and PET or CT unimodal network in terms of diagnosis and prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
幸福大白发布了新的文献求助10
9秒前
MchemG应助科研通管家采纳,获得10
12秒前
null应助科研通管家采纳,获得10
12秒前
null应助科研通管家采纳,获得10
12秒前
null应助科研通管家采纳,获得10
12秒前
MchemG应助科研通管家采纳,获得10
12秒前
null应助科研通管家采纳,获得10
12秒前
Singularity完成签到,获得积分0
33秒前
幸福大白发布了新的文献求助10
59秒前
胡可完成签到 ,获得积分10
1分钟前
WangVera完成签到,获得积分10
1分钟前
PeterLin完成签到,获得积分10
1分钟前
Vivian完成签到,获得积分10
1分钟前
大模型应助ping采纳,获得10
1分钟前
wssamuel完成签到 ,获得积分10
1分钟前
1分钟前
幸福大白发布了新的文献求助10
1分钟前
XxxxxxENT发布了新的文献求助10
2分钟前
润润润完成签到 ,获得积分10
2分钟前
共享精神应助勤恳傲旋采纳,获得10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
2分钟前
勤恳傲旋发布了新的文献求助10
2分钟前
2分钟前
3分钟前
斯文败类应助勤恳傲旋采纳,获得10
4分钟前
4分钟前
义气的书雁完成签到,获得积分10
4分钟前
4分钟前
ping发布了新的文献求助10
4分钟前
null应助科研通管家采纳,获得10
4分钟前
勤恳傲旋发布了新的文献求助10
4分钟前
hzh完成签到 ,获得积分10
4分钟前
4分钟前
fabius0351完成签到 ,获得积分10
4分钟前
ping完成签到,获得积分10
4分钟前
Spring完成签到,获得积分10
5分钟前
AmyHu完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569504
求助须知:如何正确求助?哪些是违规求助? 3991585
关于积分的说明 12355974
捐赠科研通 3663939
什么是DOI,文献DOI怎么找? 2019154
邀请新用户注册赠送积分活动 1053631
科研通“疑难数据库(出版商)”最低求助积分说明 941159