BAF-Net: bidirectional attention-aware fluid pyramid feature integrated multimodal fusion network for diagnosis and prognosis

棱锥(几何) 特征(语言学) 人工智能 融合 一般化 计算机科学 骨干网 模式识别(心理学) 情态动词 图像融合 图像(数学) 数学 化学 哲学 语言学 几何学 数学分析 计算机网络 高分子化学
作者
Huiqin Wu,Lihong Peng,Dongyang Du,Hui Xu,Guoyu Lin,Zidong Zhou,Lijun Lu,Wenbing Lv
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (10): 105007-105007 被引量:1
标识
DOI:10.1088/1361-6560/ad3cb2
摘要

Abstract Objective . To go beyond the deficiencies of the three conventional multimodal fusion strategies (i.e. input-, feature- and output-level fusion), we propose a bidirectional attention-aware fluid pyramid feature integrated fusion network (BAF-Net) with cross-modal interactions for multimodal medical image diagnosis and prognosis. Approach . BAF-Net is composed of two identical branches to preserve the unimodal features and one bidirectional attention-aware distillation stream to progressively assimilate cross-modal complements and to learn supplementary features in both bottom-up and top-down processes. Fluid pyramid connections were adopted to integrate the hierarchical features at different levels of the network, and channel-wise attention modules were exploited to mitigate cross-modal cross-level incompatibility. Furthermore, depth-wise separable convolution was introduced to fuse the cross-modal cross-level features to alleviate the increase in parameters to a great extent. The generalization abilities of BAF-Net were evaluated in terms of two clinical tasks: (1) an in-house PET-CT dataset with 174 patients for differentiation between lung cancer and pulmonary tuberculosis. (2) A public multicenter PET-CT head and neck cancer dataset with 800 patients from nine centers for overall survival prediction. Main results . On the LC-PTB dataset, improved performance was found in BAF-Net (AUC = 0.7342) compared with input-level fusion model (AUC = 0.6825; p < 0.05), feature-level fusion model (AUC = 0.6968; p = 0.0547), output-level fusion model (AUC = 0.7011; p < 0.05). On the H&N cancer dataset, BAF-Net (C-index = 0.7241) outperformed the input-, feature-, and output-level fusion model, with 2.95%, 3.77%, and 1.52% increments of C-index ( p = 0.3336, 0.0479 and 0.2911, respectively). The ablation experiments demonstrated the effectiveness of all the designed modules regarding all the evaluated metrics in both datasets. Significance . Extensive experiments on two datasets demonstrated better performance and robustness of BAF-Net than three conventional fusion strategies and PET or CT unimodal network in terms of diagnosis and prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jason_dai完成签到,获得积分10
3秒前
lzx应助粗犷的灵松采纳,获得150
4秒前
SciGPT应助NMZN采纳,获得10
4秒前
xuda发布了新的文献求助10
5秒前
顾矜应助无限的谷丝采纳,获得10
5秒前
慕青应助苗条的芹采纳,获得10
5秒前
用户123完成签到,获得积分10
5秒前
6秒前
xixixiziwei完成签到,获得积分10
6秒前
俭朴新之完成签到 ,获得积分10
7秒前
榴芒兔应助依古比古采纳,获得10
7秒前
Lei完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
9秒前
在雨里思考完成签到,获得积分10
9秒前
小蘑菇应助xuda采纳,获得10
9秒前
winnerbing发布了新的文献求助10
9秒前
EpiphanyQ发布了新的文献求助10
10秒前
华仔应助丝丝采纳,获得10
10秒前
还没想好完成签到,获得积分10
10秒前
xiaoli完成签到,获得积分20
11秒前
温暖的鸿完成签到 ,获得积分10
11秒前
12秒前
外向菲鹰发布了新的文献求助10
12秒前
闪闪的夜阑完成签到,获得积分10
12秒前
Kingzd完成签到,获得积分10
13秒前
芋圆不圆发布了新的文献求助10
14秒前
14秒前
老实憨厚发布了新的文献求助10
14秒前
saisyo发布了新的文献求助10
15秒前
Kirito完成签到,获得积分0
15秒前
16秒前
研途顺利发布了新的文献求助10
16秒前
桐桐应助哈哈哈哈采纳,获得10
17秒前
17秒前
17秒前
18秒前
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011501
求助须知:如何正确求助?哪些是违规求助? 3551133
关于积分的说明 11307791
捐赠科研通 3285391
什么是DOI,文献DOI怎么找? 1811040
邀请新用户注册赠送积分活动 886767
科研通“疑难数据库(出版商)”最低求助积分说明 811636