Knowledge Graph Embedding for Topical and Entity Classification in Multi-Source Social Network Data

计算机科学 嵌入 知识图 图形 人工智能 情报检索 数据科学 理论计算机科学
作者
Abiola Akinnubi,Nitin Agarwal,Mustafa Alassad,Jeremiah Ajiboye
标识
DOI:10.1145/3625007.3627315
摘要

Historically, online data has provided meaningful insights for information mining, leading to the adoption of knowledge graphs for application to online data. Knowledge embedding has become an important aspect of encoding and decoding links, relationships, and predicting the ties of an entity to an existing knowledge graph. This study applied topic modeling to extract topics, entities, and themes from heterogeneous web data from different sources around the Indo-Pacific region and modeled a knowledge graph. The knowledge graph was subjected to knowledge embedding by applying four scoring mechanisms: ComplEx, TransE, DistMult, and HolE, on a domain knowledge graph of Indo-Pacific Belt and Road initiatives to determine whether it was capable of revealing missing insights. This work significantly uses knowledge graphs and embedding to understand socioeconomic-related discussions online. Valuable insights were gained from the data in this research's clustering results of knowledge embedding. Important themes such as NASAKOM and BRI were identified in Cluster 0. Cluster 1 contained themes that discussed Marxist movements synonymous with Indonesia, and Cluster 2 showed themes on China's road policies, such as Asia-Pacific Economic Cooperation and Export-Import Bank China. Cluster 3 focused mainly on China's economic policies and the Philippines. Overall, this study demonstrates the usefulness of topic modeling and knowledge embedding in uncovering insights from online data and has implications for understanding socioeconomic trends in the Indo-Pacific region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
义气发布了新的文献求助10
3秒前
ljl发布了新的文献求助10
6秒前
陈小宇kk发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
斯文败类应助咣叽采纳,获得10
8秒前
9秒前
11秒前
12秒前
小帆帆发布了新的文献求助10
12秒前
赘婿应助hh采纳,获得10
14秒前
共享精神应助zzz采纳,获得10
14秒前
超级的鞅发布了新的文献求助10
14秒前
JamesPei应助唐明穆采纳,获得10
15秒前
16秒前
嘉欣博博完成签到 ,获得积分20
18秒前
我是老大应助Sisi Lee采纳,获得10
19秒前
19秒前
李爱国应助风再起时采纳,获得10
19秒前
iuuuuu完成签到 ,获得积分10
20秒前
20秒前
liuz53发布了新的文献求助10
20秒前
NexusExplorer应助让让采纳,获得10
21秒前
21秒前
yunyii发布了新的文献求助10
22秒前
23秒前
安静碧灵发布了新的文献求助10
24秒前
Quan关注了科研通微信公众号
25秒前
27秒前
科研通AI2S应助失眠班采纳,获得10
27秒前
陈小宇kk完成签到,获得积分10
28秒前
28秒前
28秒前
香蕉觅云应助yunyii采纳,获得10
28秒前
29秒前
31秒前
31秒前
zhu发布了新的文献求助10
32秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129128
求助须知:如何正确求助?哪些是违规求助? 2779966
关于积分的说明 7745466
捐赠科研通 2435144
什么是DOI,文献DOI怎么找? 1293924
科研通“疑难数据库(出版商)”最低求助积分说明 623474
版权声明 600542