Time-Dependent and Coating Modulation of Tomato Response upon Sulfur Nanoparticle Internalization and Assimilation: An Orthogonal Mechanistic Investigation

表面改性 生物物理学 化学 生物 物理化学
作者
Yi Wang,Chaoyi Deng,Lijuan Zhao,Christian O. Dimkpa,Wade H. Elmer,Bofei Wang,Sudhir Sharma,Zhenyu Wang,Om Parkash Dhankher,Baoshan Xing,Jason C. White
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (18): 11813-11827 被引量:4
标识
DOI:10.1021/acsnano.4c00512
摘要

Nanoenabled strategies have recently attracted attention as a sustainable platform for agricultural applications. Here, we present a mechanistic understanding of nanobiointeraction through an orthogonal investigation. Pristine (nS) and stearic acid surface-modified (cS) sulfur nanoparticles (NPs) as a multifunctional nanofertilizer were applied to tomato (Solanum lycopersicumL.) through soil. Both nS and cS increased root mass by 73% and 81% and increased shoot weight by 35% and 50%, respectively, compared to the untreated controls. Bulk sulfur (bS) and ionic sulfate (iS) had no such stimulatory effect. Notably, surface modification of S NPs had a positive impact, as cS yielded 38% and 51% greater shoot weight compared to nS at 100 and 200 mg/L, respectively. Moreover, nS and cS significantly improved leaf photosynthesis by promoting the linear electron flow, quantum yield of photosystem II, and relative chlorophyll content. The time-dependent gene expression related to two S bioassimilation and signaling pathways showed a specific role of NP surface physicochemical properties. Additionally, a time-dependent Global Test and machine learning strategy applied to understand the NP surface modification domain metabolomic profiling showed that cS increased the contents of IA, tryptophan, tomatidine, and scopoletin in plant leaves compared to the other treatments. These findings provide critical mechanistic insights into the use of nanoscale sulfur as a multifunctional soil amendment to enhance plant performance as part of nanoenabled agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qiaoguliang发布了新的文献求助10
刚刚
1秒前
jg完成签到,获得积分10
2秒前
2秒前
大个应助pipipi采纳,获得10
3秒前
3秒前
drdouxia发布了新的文献求助10
4秒前
lyzhou发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
9秒前
10秒前
向言之完成签到,获得积分10
11秒前
12秒前
无尘发布了新的文献求助10
12秒前
一站到底发布了新的文献求助10
12秒前
drdouxia完成签到,获得积分10
13秒前
13秒前
上官涵双发布了新的文献求助10
14秒前
14秒前
Rr驳回了yar应助
15秒前
pipipi发布了新的文献求助10
17秒前
川泽发布了新的文献求助10
18秒前
一站到底完成签到,获得积分10
19秒前
满意雅霜发布了新的文献求助10
21秒前
21秒前
顾矜应助爱学习的小凌采纳,获得10
22秒前
24秒前
25秒前
tuborong完成签到,获得积分10
26秒前
27秒前
27秒前
28秒前
默默白开水完成签到,获得积分10
28秒前
李健的小迷弟应助木叶采纳,获得30
28秒前
28秒前
名天发布了新的文献求助10
31秒前
青林发布了新的文献求助10
31秒前
32秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462739
求助须知:如何正确求助?哪些是违规求助? 3056247
关于积分的说明 9051296
捐赠科研通 2745940
什么是DOI,文献DOI怎么找? 1506688
科研通“疑难数据库(出版商)”最低求助积分说明 696194
邀请新用户注册赠送积分活动 695720