亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Classification of VOCs Based on Sensor Images Using a Lightweight Neural Network for Lung Cancer Diagnosis

人工神经网络 卷积神经网络 领域(数学) 推论 人工智能 计算机科学 机器学习 模式识别(心理学) 数学 纯数学
作者
Chengyuan Zha,Lei Li,Fangting Zhu,Yanzhe Zhao
出处
期刊:Sensors [MDPI AG]
卷期号:24 (9): 2818-2818 被引量:1
标识
DOI:10.3390/s24092818
摘要

The application of artificial intelligence to point-of-care testing (POCT) disease detection has become a hot research field, in which breath detection, which detects the patient’s exhaled VOCs, combined with sensor arrays of convolutional neural network (CNN) algorithms as a new lung cancer detection is attracting more researchers’ attention. However, the low accuracy, high-complexity computation and large number of parameters make the CNN algorithms difficult to transplant to the embedded system of POCT devices. A lightweight neural network (LTNet) in this work is proposed to deal with this problem, and meanwhile, achieve high-precision classification of acetone and ethanol gases, which are respiratory markers for lung cancer patients. Compared to currently popular lightweight CNN models, such as EfficientNet, LTNet has fewer parameters (32 K) and its training weight size is only 0.155 MB. LTNet achieved an overall classification accuracy of 99.06% and 99.14% in the own mixed gas dataset and the University of California (UCI) dataset, which are both higher than the scores of the six existing models, and it also offers the shortest training (844.38 s and 584.67 s) and inference times (23 s and 14 s) in the same validation sets. Compared to the existing CNN models, LTNet is more suitable for resource-limited POCT devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiongyh10完成签到,获得积分10
5秒前
爱静静应助ZX0501采纳,获得10
14秒前
爱静静应助Shonso采纳,获得30
15秒前
31秒前
xiaowang发布了新的文献求助30
35秒前
49秒前
爱静静应助科研通管家采纳,获得20
49秒前
爱静静应助科研通管家采纳,获得10
49秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
50秒前
爱静静应助志在山野居采纳,获得10
53秒前
花无双完成签到,获得积分0
1分钟前
Shonso发布了新的文献求助30
1分钟前
所所应助asdfggg采纳,获得10
2分钟前
Artin完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
Youlu发布了新的文献求助10
2分钟前
威武果汁完成签到,获得积分10
3分钟前
CipherSage应助Youlu采纳,获得10
3分钟前
爱静静应助cc采纳,获得10
3分钟前
3分钟前
kkk完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
SCT发布了新的文献求助10
4分钟前
4分钟前
酷波er应助NuLi采纳,获得10
4分钟前
bkagyin应助个性芹菜采纳,获得10
4分钟前
4分钟前
5分钟前
physicalproblem应助lemon 1118采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Pediatric Nurse Telephone Triage 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3349923
求助须知:如何正确求助?哪些是违规求助? 2975828
关于积分的说明 8671608
捐赠科研通 2656867
什么是DOI,文献DOI怎么找? 1454817
科研通“疑难数据库(出版商)”最低求助积分说明 673473
邀请新用户注册赠送积分活动 663949