Co-occurrence order-preserving pattern mining with keypoint alignment for time series

计算机科学 后缀 前缀 系列(地层学) 数据挖掘 可扩展性 特里亚 时间序列 后缀树 光学(聚焦) 人工智能 模式识别(心理学) 机器学习 数据结构 数据库 哲学 物理 光学 古生物学 生物 程序设计语言 语言学
作者
Youxi Wu,Zhen Wang,Yan Li,Yingchun Guo,He Jiang,Xingquan Zhu,Xindong Wu
出处
期刊:ACM transactions on management information systems [Association for Computing Machinery]
卷期号:15 (2): 1-27 被引量:1
标识
DOI:10.1145/3658450
摘要

Recently, order-preserving pattern (OPP) mining has been proposed to discover some patterns, which can be seen as trend changes in time series. Although existing OPP mining algorithms have achieved satisfactory performance, they discover all frequent patterns. However, in some cases, users focus on a particular trend and its associated trends. To efficiently discover trend information related to a specific prefix pattern, this article addresses the issue of co-occurrence OPP mining (COP) and proposes an algorithm named COP-Miner to discover COPs from historical time series. COP-Miner consists of three parts: extracting keypoints, preparation stage, and iteratively calculating supports and mining frequent COPs. Extracting keypoints is used to obtain local extreme points of patterns and time series. The preparation stage is designed to prepare for the first round of mining, which contains four steps: obtaining the suffix OPP of the keypoint sub-time series, calculating the occurrences of the suffix OPP, verifying the occurrences of the keypoint sub-time series, and calculating the occurrences of all fusion patterns of the keypoint sub-time series. To further improve the efficiency of support calculation, we propose a support calculation method with an ending strategy that uses the occurrences of prefix and suffix patterns to calculate the occurrences of superpatterns. Experimental results indicate that COP-Miner outperforms the other competing algorithms in running time and scalability. Moreover, COPs with keypoint alignment yield better prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助科研通管家采纳,获得10
刚刚
斜玉完成签到,获得积分10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
眼睛大硬币完成签到 ,获得积分10
刚刚
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
1秒前
twob完成签到,获得积分10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
奋斗的醉柳完成签到,获得积分10
2秒前
Ali发布了新的文献求助30
2秒前
GGKing发布了新的文献求助10
3秒前
小马甲应助谦让不二采纳,获得10
3秒前
研小白发布了新的文献求助10
3秒前
gaga完成签到,获得积分10
3秒前
4秒前
饱满秋完成签到,获得积分10
4秒前
包容朝雪发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
脑洞疼应助zyx6328057采纳,获得10
6秒前
星辰大海应助李大了采纳,获得10
6秒前
6秒前
王q完成签到,获得积分10
7秒前
幸福大白发布了新的文献求助10
7秒前
时闲应助可靠的南露采纳,获得10
7秒前
今后应助李三日采纳,获得10
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960498
求助须知:如何正确求助?哪些是违规求助? 3506752
关于积分的说明 11131877
捐赠科研通 3238932
什么是DOI,文献DOI怎么找? 1789917
邀请新用户注册赠送积分活动 872043
科研通“疑难数据库(出版商)”最低求助积分说明 803128