Co-occurrence order-preserving pattern mining with keypoint alignment for time series

计算机科学 后缀 前缀 系列(地层学) 数据挖掘 可扩展性 特里亚 时间序列 后缀树 光学(聚焦) 人工智能 模式识别(心理学) 机器学习 数据结构 数据库 哲学 物理 光学 古生物学 生物 程序设计语言 语言学
作者
Youxi Wu,Zhen Wang,Yan Li,Yingchun Guo,He Jiang,Xingquan Zhu,Xindong Wu
出处
期刊:ACM transactions on management information systems [Association for Computing Machinery]
卷期号:15 (2): 1-27 被引量:1
标识
DOI:10.1145/3658450
摘要

Recently, order-preserving pattern (OPP) mining has been proposed to discover some patterns, which can be seen as trend changes in time series. Although existing OPP mining algorithms have achieved satisfactory performance, they discover all frequent patterns. However, in some cases, users focus on a particular trend and its associated trends. To efficiently discover trend information related to a specific prefix pattern, this article addresses the issue of co-occurrence OPP mining (COP) and proposes an algorithm named COP-Miner to discover COPs from historical time series. COP-Miner consists of three parts: extracting keypoints, preparation stage, and iteratively calculating supports and mining frequent COPs. Extracting keypoints is used to obtain local extreme points of patterns and time series. The preparation stage is designed to prepare for the first round of mining, which contains four steps: obtaining the suffix OPP of the keypoint sub-time series, calculating the occurrences of the suffix OPP, verifying the occurrences of the keypoint sub-time series, and calculating the occurrences of all fusion patterns of the keypoint sub-time series. To further improve the efficiency of support calculation, we propose a support calculation method with an ending strategy that uses the occurrences of prefix and suffix patterns to calculate the occurrences of superpatterns. Experimental results indicate that COP-Miner outperforms the other competing algorithms in running time and scalability. Moreover, COPs with keypoint alignment yield better prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
saya完成签到,获得积分20
1秒前
2秒前
Muya完成签到,获得积分10
2秒前
森鸥外发布了新的文献求助30
2秒前
2秒前
134345发布了新的文献求助10
3秒前
4秒前
4秒前
深情安青应助马也君采纳,获得10
4秒前
5秒前
CZ88完成签到 ,获得积分10
6秒前
whoKnows应助saya采纳,获得30
6秒前
哎呀发布了新的文献求助30
7秒前
山水之乐发布了新的文献求助10
7秒前
7秒前
水怪啊发布了新的文献求助10
8秒前
林业光魔发布了新的文献求助10
9秒前
10秒前
科研通AI5应助学吧采纳,获得10
11秒前
xx完成签到,获得积分10
12秒前
桐桐应助旭日采纳,获得10
12秒前
Ayanami完成签到,获得积分20
13秒前
13秒前
森鸥外完成签到,获得积分10
13秒前
momo完成签到,获得积分10
15秒前
15秒前
16秒前
清欢发布了新的文献求助10
18秒前
18秒前
12rcli完成签到,获得积分0
18秒前
18秒前
19秒前
椰丝豆沙完成签到,获得积分20
19秒前
Liangyong_Fu完成签到 ,获得积分10
20秒前
李健应助hbsand采纳,获得10
20秒前
weige完成签到,获得积分10
21秒前
勿明发布了新的文献求助10
21秒前
大街小巷发布了新的文献求助10
23秒前
农夫完成签到,获得积分0
23秒前
鹊起发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934127
求助须知:如何正确求助?哪些是违规求助? 4202119
关于积分的说明 13056004
捐赠科研通 3976280
什么是DOI,文献DOI怎么找? 2178910
邀请新用户注册赠送积分活动 1195201
关于科研通互助平台的介绍 1106567