亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Co-occurrence Order-preserving Pattern Mining with Keypoint Alignment for Time Series

计算机科学 后缀 前缀 系列(地层学) 数据挖掘 可扩展性 特里亚 时间序列 后缀树 光学(聚焦) 人工智能 模式识别(心理学) 机器学习 数据结构 数据库 哲学 物理 光学 古生物学 生物 程序设计语言 语言学
作者
Youxi Wu,Zhen Wang,Yan Li,Yingchun Guo,He Jiang,Xingquan Zhu,Xindong Wu
出处
期刊:ACM transactions on management information systems [Association for Computing Machinery]
卷期号:15 (2): 1-27 被引量:7
标识
DOI:10.1145/3658450
摘要

Recently, order-preserving pattern (OPP) mining has been proposed to discover some patterns, which can be seen as trend changes in time series. Although existing OPP mining algorithms have achieved satisfactory performance, they discover all frequent patterns. However, in some cases, users focus on a particular trend and its associated trends. To efficiently discover trend information related to a specific prefix pattern, this article addresses the issue of co-occurrence OPP mining (COP) and proposes an algorithm named COP-Miner to discover COPs from historical time series. COP-Miner consists of three parts: extracting keypoints, preparation stage, and iteratively calculating supports and mining frequent COPs. Extracting keypoints is used to obtain local extreme points of patterns and time series. The preparation stage is designed to prepare for the first round of mining, which contains four steps: obtaining the suffix OPP of the keypoint sub-time series, calculating the occurrences of the suffix OPP, verifying the occurrences of the keypoint sub-time series, and calculating the occurrences of all fusion patterns of the keypoint sub-time series. To further improve the efficiency of support calculation, we propose a support calculation method with an ending strategy that uses the occurrences of prefix and suffix patterns to calculate the occurrences of superpatterns. Experimental results indicate that COP-Miner outperforms the other competing algorithms in running time and scalability. Moreover, COPs with keypoint alignment yield better prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
38秒前
44秒前
54秒前
Yikao完成签到 ,获得积分10
1分钟前
ZIJUNZHAO完成签到 ,获得积分10
2分钟前
斯文败类应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
总是很简单完成签到 ,获得积分10
2分钟前
Ykaor完成签到 ,获得积分10
3分钟前
古铜完成签到 ,获得积分10
3分钟前
3分钟前
乐正文涛发布了新的文献求助10
3分钟前
ajing完成签到,获得积分10
3分钟前
QYQ完成签到 ,获得积分10
3分钟前
msk完成签到 ,获得积分10
3分钟前
乐正怡完成签到 ,获得积分10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
FMHChan完成签到,获得积分10
5分钟前
cy0824完成签到 ,获得积分10
5分钟前
wodetaiyangLLL完成签到 ,获得积分10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
6分钟前
铭铭完成签到 ,获得积分10
7分钟前
FashionBoy应助科研通管家采纳,获得10
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
科研通AI6应助科研通管家采纳,获得10
8分钟前
Attaa完成签到,获得积分10
10分钟前
10分钟前
木木发布了新的文献求助10
10分钟前
10分钟前
10分钟前
gexzygg应助科研通管家采纳,获得10
10分钟前
gexzygg应助科研通管家采纳,获得10
10分钟前
shhoing应助科研通管家采纳,获得10
10分钟前
gexzygg应助科研通管家采纳,获得10
10分钟前
10分钟前
科研通AI6应助年轻的雁露采纳,获得30
10分钟前
11分钟前
BowieHuang应助冷酷的寒天采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561535
求助须知:如何正确求助?哪些是违规求助? 4646630
关于积分的说明 14678717
捐赠科研通 4587966
什么是DOI,文献DOI怎么找? 2517258
邀请新用户注册赠送积分活动 1490540
关于科研通互助平台的介绍 1461557