已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Co-occurrence Order-preserving Pattern Mining with Keypoint Alignment for Time Series

计算机科学 后缀 前缀 系列(地层学) 数据挖掘 可扩展性 特里亚 时间序列 后缀树 光学(聚焦) 人工智能 模式识别(心理学) 机器学习 数据结构 数据库 哲学 物理 光学 古生物学 生物 程序设计语言 语言学
作者
Youxi Wu,Zhen Wang,Yan Li,Yingchun Guo,He Jiang,Xingquan Zhu,Xindong Wu
出处
期刊:ACM transactions on management information systems [Association for Computing Machinery]
卷期号:15 (2): 1-27 被引量:7
标识
DOI:10.1145/3658450
摘要

Recently, order-preserving pattern (OPP) mining has been proposed to discover some patterns, which can be seen as trend changes in time series. Although existing OPP mining algorithms have achieved satisfactory performance, they discover all frequent patterns. However, in some cases, users focus on a particular trend and its associated trends. To efficiently discover trend information related to a specific prefix pattern, this article addresses the issue of co-occurrence OPP mining (COP) and proposes an algorithm named COP-Miner to discover COPs from historical time series. COP-Miner consists of three parts: extracting keypoints, preparation stage, and iteratively calculating supports and mining frequent COPs. Extracting keypoints is used to obtain local extreme points of patterns and time series. The preparation stage is designed to prepare for the first round of mining, which contains four steps: obtaining the suffix OPP of the keypoint sub-time series, calculating the occurrences of the suffix OPP, verifying the occurrences of the keypoint sub-time series, and calculating the occurrences of all fusion patterns of the keypoint sub-time series. To further improve the efficiency of support calculation, we propose a support calculation method with an ending strategy that uses the occurrences of prefix and suffix patterns to calculate the occurrences of superpatterns. Experimental results indicate that COP-Miner outperforms the other competing algorithms in running time and scalability. Moreover, COPs with keypoint alignment yield better prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Robin完成签到,获得积分20
1秒前
在水一方应助复方蛋酥卷采纳,获得10
1秒前
2秒前
忧伤的绍辉完成签到 ,获得积分10
4秒前
可爱的函函应助初九采纳,获得10
5秒前
帕拉迪岛原著居民完成签到,获得积分10
6秒前
糖醋里脊加醋完成签到 ,获得积分10
7秒前
情怀应助Robin采纳,获得30
7秒前
8秒前
8秒前
李健的小迷弟应助洪秋白采纳,获得10
8秒前
111222发布了新的文献求助10
8秒前
Evan完成签到 ,获得积分10
10秒前
koutianle完成签到 ,获得积分10
11秒前
12秒前
邱老黑完成签到,获得积分10
13秒前
炙热怀蝶发布了新的文献求助10
13秒前
扶摇完成签到 ,获得积分10
13秒前
星辰大海应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
xxfsx应助科研通管家采纳,获得20
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
归尘应助科研通管家采纳,获得30
14秒前
Orange应助科研通管家采纳,获得10
14秒前
14秒前
15秒前
丘比特应助呀呀呀采纳,获得10
15秒前
深情安青应助愤怒的山兰采纳,获得10
16秒前
清新的音响完成签到 ,获得积分10
16秒前
16秒前
17秒前
雷培完成签到,获得积分20
17秒前
星子发布了新的文献求助10
17秒前
小小鱼完成签到 ,获得积分10
21秒前
野启发布了新的文献求助10
21秒前
小愿张完成签到,获得积分10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488170
求助须知:如何正确求助?哪些是违规求助? 4587174
关于积分的说明 14412856
捐赠科研通 4518407
什么是DOI,文献DOI怎么找? 2475741
邀请新用户注册赠送积分活动 1461367
关于科研通互助平台的介绍 1434263