Investigation of maximum temperatures in lithium-ion batteries by CFD and machine learning

电池(电) 电池组 人工神经网络 电动汽车 测距 环境科学 汽车工程 锂离子电池 核工程 模拟 材料科学 计算机科学 工程类 热力学 人工智能 功率(物理) 物理 电信
作者
Aykut Bacak
标识
DOI:10.1177/09544070241242825
摘要

Alternative fuels are becoming more popular as awareness of fossil fuel depletion, pollution, and climate change grows. Numerous industrial companies are producing electric automobiles for use worldwide. Electric vehicles’ battery packs’ cooling causes firing due to high temperatures. In this study, the surface temperatures of a single electric battery with dimensions of 160 mm × 210 mm within a battery pack were investigated using computational fluid dynamics and, subsequently, Levenberg-Marquardt machine learning as a function of ambient temperature, convective heat transfer coefficient, nominal capacity of the electric battery, and discharge rate. The transport coefficient has been calculated for a rechargeable electric battery with a nominal capacity ranging from 14.6 to 20 Ah and a discharge rate varying between 1 and 15, taking into account conditions of stagnant air at temperatures ranging from 20°C to 35°C and values between 5 and 20 W/m 2 .K. Insufficient or absent cooling of battery temperatures can lead to them reaching combustion temperatures of electric vehicle batteries, typically from 50°C to 80°C, depending on the operational circumstances. An artificial neural network was utilized in machine learning to forecast maximum temperatures based on operating conditions without requiring simulation. The neural network achieved an estimated mean squared error of 0.00552 and a calculated coefficient of determination of 0.99. The neural network model can predict outputs with mean and standard deviation rates below 0.237. The anticipated artificial neural network model can accurately forecast the maximum surface temperature of an electric vehicle battery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
沉默怜容发布了新的文献求助10
2秒前
whl完成签到 ,获得积分10
4秒前
tgoutgou完成签到,获得积分10
4秒前
qq完成签到,获得积分10
5秒前
Owen应助liyuchen采纳,获得10
5秒前
6秒前
Teen完成签到 ,获得积分10
6秒前
lop完成签到,获得积分10
6秒前
呆萌初南完成签到 ,获得积分10
8秒前
充电宝应助iiianchen采纳,获得10
8秒前
刘亦菲本菲完成签到,获得积分10
9秒前
冰心完成签到 ,获得积分10
10秒前
朱祥龙完成签到,获得积分10
12秒前
慕青应助qq采纳,获得10
12秒前
13秒前
瓜农完成签到,获得积分10
14秒前
15秒前
15秒前
17秒前
hyjcnhyj发布了新的文献求助10
17秒前
新楚完成签到 ,获得积分10
20秒前
deniroming发布了新的文献求助10
21秒前
追寻梦松完成签到,获得积分10
21秒前
iiianchen发布了新的文献求助10
21秒前
HH完成签到 ,获得积分10
25秒前
25秒前
28秒前
29秒前
新来的家伙完成签到 ,获得积分10
29秒前
杜华詹发布了新的文献求助10
29秒前
njusdf发布了新的文献求助10
30秒前
碧蓝的睫毛完成签到,获得积分20
30秒前
yar应助闪闪烧鹅采纳,获得10
30秒前
32秒前
脑洞疼应助deniroming采纳,获得10
32秒前
峰宝宝完成签到,获得积分10
33秒前
砳熠完成签到 ,获得积分10
33秒前
丘比特应助专注的问寒采纳,获得10
33秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464222
求助须知:如何正确求助?哪些是违规求助? 3057540
关于积分的说明 9057512
捐赠科研通 2747626
什么是DOI,文献DOI怎么找? 1507432
科研通“疑难数据库(出版商)”最低求助积分说明 696553
邀请新用户注册赠送积分活动 696070