石墨烯
双金属片
氧化物
电化学气体传感器
电化学
X射线光电子能谱
扫描电子显微镜
材料科学
傅里叶变换红外光谱
电极
化学工程
玻璃碳
化学
循环伏安法
纳米技术
复合材料
金属
冶金
工程类
物理化学
作者
Shuang Han,Manlin Zhang,J. Joshua Yang,Nan Zhang,Ruhui Yan,Lin Wang,Lu Gao,Zhichao Zhang
标识
DOI:10.1016/j.jelechem.2024.118295
摘要
A highly and simply sensitive electrochemical sensor has been developed for the detection of trace chloramphenicol (CAP) in water based on Ni/Co bimetallic metal–organic framework-reduced graphene oxide composites [rGO/NiCo-BTC MOFs (BTC = 1,3,5-benzenetricarboxylicacid)] modified glassy carbon electrode (GCE/rGO/NiCo-BTC MOFs). The bare glassy carbon electrode was initially coated with graphene oxide (GO). Subsequently, the GO was electrochemically reduced to obtain reduced graphene oxide (rGO). NiCo-BTC MOFs was grown on the surface of rGO modified electrode by in-situ electrochemical synthesis method to construct GCE/rGO/NiCo-BTC MOFs. The as-made composites films have been characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. Further, different electrochemical techniques are utilized for investigating the electrochemical reduction behaviors of CAP at GCE/rGO/NiCo-BTC MOFs. This composites film modified electrode combines the large surface area and excellent electrical properties of rGO with the good catalytic activity of NiCo-BTC MOFs, resulting in a significant enhancement of the electrochemical signal during the electroreduction of CAP. Under the optimized experimental conditions, the sensor exhibits excellent sensing performance for CAP, with a wider linear dynamic range (0.1 − 100 μM), a lower limit of detection (0.235 μM) (S/N = 3) and a ultra-high sensitivity (33.12 μA·μM−1·cm−2). The tap water spiked with different concentrations of CAP were considered. The recoveries ranges from 97.79 % to 100.07 %, with relative standard deviations ranging from 3.45 % to 5.40 %. The method has been successfully applied for the determination of CAP in real samples, yielding satisfactory results. With further research and development, electrochemical in-situ synthesis of MOFs composites have the potential to revolutionize the design and performance of electrochemical sensors, holding great promise in the field of electrochemical sensing.
科研通智能强力驱动
Strongly Powered by AbleSci AI