M3YOLOv5: Feature enhanced YOLOv5 model for mandibular fracture detection

计算机科学 人工智能 特征(语言学) 特征提取 模式识别(心理学) 卷积神经网络 深度学习 哲学 语言学
作者
Tao Zhou,Hongwei Wang,Yuhu Du,Fengzhen Liu,Yujie Guo,Huiling Lu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:173: 108291-108291 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108291
摘要

It is very important to detect mandibular fracture region. However, the size of mandibular fracture region is different due to different anatomical positions, different sites and different degrees of force. It is difficult to locate and recognize fracture region accurately. To solve these problems, M3YOLOv5 model is proposed in this paper. Three feature enhancement strategies are designed, which improve the ability of model to locate and recognize mandibular fracture region. Firstly, Global-Local Feature Extraction Module (GLFEM) is designed. By effectively combining Convolutional Neural Network (CNN) and Transformer, the problem of insufficient global information extraction ability of CNN is complemented, and the positioning ability of the model to the fracture region is improved. Secondly, in order to improve the interaction ability of context information, Deep-Shallow Feature Interaction Module (DSFIM) is designed. In this module, the spatial information in the shallow feature layer is embedded to the deep feature layer by the spatial attention mechanism, and the semantic information in the deep feature layer is embedded to the shallow feature layer by the channel attention mechanism. The fracture region recognition ability of the model is improved. Finally, Multi-scale Multi receptive-field Feature Mixing Module (MMFMM) is designed. Deep separate convolution chains are used in this modal, which is composed by multiple layers of different scales and different dilation coefficients. This method provides richer receptive field for the model, and the ability to detect fracture region of different scales is improved. The precision rate, mAP value, recall rate and F1 value of M3YOLOv5 model on mandibular fracture CT data set are 97.18%, 96.86%, 94.42% and 95.58% respectively. The experimental results show that there is better performance about M3YOLOv5 model than the mainstream detection models. The M3YOLOv5 model can effectively recognize and locate the mandibular fracture region, which is of great significance for doctors' clinical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待的代容完成签到,获得积分10
刚刚
刚刚
赵子曰发布了新的文献求助10
1秒前
ga1ada发布了新的文献求助10
1秒前
简单应助小鹿采纳,获得10
1秒前
欣喜谷槐发布了新的文献求助10
2秒前
科研辣椒完成签到,获得积分10
2秒前
坦率鬼卞完成签到,获得积分10
2秒前
景胜杰发布了新的文献求助10
3秒前
lishan完成签到,获得积分10
4秒前
4秒前
hswhswqkdh完成签到,获得积分10
5秒前
打打应助冷傲凉面采纳,获得10
5秒前
科研通AI5应助小金骑士采纳,获得10
5秒前
5秒前
张豪发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
7秒前
linkinparkcs发布了新的文献求助10
7秒前
aaacg发布了新的文献求助10
8秒前
科研通AI5应助wait采纳,获得10
8秒前
10秒前
科目三应助随机获取昵称采纳,获得10
10秒前
11秒前
小杜发布了新的文献求助10
11秒前
12秒前
12秒前
吉不二发布了新的文献求助20
12秒前
five43完成签到,获得积分10
14秒前
欣喜谷槐完成签到,获得积分20
14秒前
16秒前
阳光中道完成签到,获得积分20
16秒前
17秒前
17秒前
科研通AI5应助ga1ada采纳,获得10
17秒前
18秒前
ahy完成签到,获得积分20
19秒前
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3486853
求助须知:如何正确求助?哪些是违规求助? 3074994
关于积分的说明 9139155
捐赠科研通 2767244
什么是DOI,文献DOI怎么找? 1518499
邀请新用户注册赠送积分活动 703111
科研通“疑难数据库(出版商)”最低求助积分说明 701606