Influence of voltage profile and fitting technique on the accuracy of lithium-ion battery degradation identification through the Voltage Profile Model

电压 降级(电信) 电极 参数统计 锂(药物) 电池(电) 材料科学 容量损失 生物系统 电子工程 分析化学(期刊) 化学 计算机科学 电气工程 工程类 电化学 色谱法 数学 功率(物理) 统计 物理 内分泌学 物理化学 生物 医学 量子力学
作者
Izzuan Bin-Mat-Arishad,Buddhi Wimarshana,Izzuan Bin-Mat-Arishad
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:70: 107884-107884 被引量:1
标识
DOI:10.1016/j.est.2023.107884
摘要

Accurate estimation of degradation in lithium-ion batteries is essential in predicting remaining useful life and understanding how to better operate batteries for extended lifetimes. A common way of estimating degradation modes in lithium-ion batteries is to analyse the cells voltage profile through techniques such as incremental capacity analysis, differential voltage analysis or direct fitting of half-cell potential profiles. To extract degradation modes such as loss of lithium inventory or loss of active material requires accurate knowledge of the individual electrode half-cell potential profiles, which is often not available for commercial cells without performing a cell teardown. This work investigates how the choice of half-cell potential profile influences the accuracy of a parametric voltage profile model to estimate electrode capacity and simulated degradation modes through a combination of half-cell and three electrode testing on a LiNi0.5Mn0.3Co0.2O2/Graphite cell. Results demonstrate that whilst half-cell potential data from the same electrode material batch gives the most accurate voltage profile fit, other data sources for the same electrode chemistry can also accurately estimate individual electrode capacity in a fresh cell. However, when degradation modes are induced into the voltage profile, only the model using half-cell profiles obtained from similar sources to the full-cell configurations are able to accurately distinguish between loss of lithium inventory and loss of active material of the positive electrode. It is also shown that the diagnostic accuracy of the parametric voltage profile model can be improved for all data sources through combined fitting of the voltage, incremental capacity and differential voltage analysis compared to voltage profile fitting alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Grayson发布了新的文献求助10
刚刚
研友_5Zl9D8完成签到,获得积分10
4秒前
Sofia完成签到 ,获得积分0
4秒前
流苏完成签到,获得积分10
5秒前
=Q完成签到,获得积分10
5秒前
TJW完成签到 ,获得积分10
6秒前
crack完成签到,获得积分10
6秒前
SYLH应助星川采纳,获得10
7秒前
SciGPT应助星川采纳,获得10
7秒前
ihonest完成签到,获得积分10
8秒前
科研通AI2S应助awedfa采纳,获得10
16秒前
19秒前
淡然冬灵完成签到,获得积分10
21秒前
22秒前
手拿大炮完成签到,获得积分10
22秒前
北还北发布了新的文献求助10
22秒前
香蕉觅云应助zh采纳,获得10
22秒前
烟花应助仝言采纳,获得10
23秒前
手拿大炮发布了新的文献求助10
25秒前
25秒前
倒霉蛋完成签到,获得积分10
25秒前
情怀应助dew采纳,获得10
25秒前
手术刀完成签到 ,获得积分10
27秒前
27秒前
菜菜发布了新的文献求助10
28秒前
嘿嘿嘿完成签到,获得积分10
29秒前
学分完成签到 ,获得积分10
30秒前
jw完成签到,获得积分10
31秒前
Fezz发布了新的文献求助10
31秒前
fengpu完成签到,获得积分10
33秒前
沧笙踏歌应助嘿嘿嘿采纳,获得10
33秒前
吉师大_科研完成签到,获得积分10
34秒前
35秒前
传奇3应助菜菜采纳,获得10
37秒前
Owen应助Fezz采纳,获得10
38秒前
yar应助liuzengzhang666采纳,获得10
38秒前
烟波钓客完成签到,获得积分10
39秒前
yyj完成签到,获得积分10
41秒前
淡淡的小蘑菇完成签到 ,获得积分10
42秒前
jzyy完成签到 ,获得积分10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511071
关于积分的说明 11156136
捐赠科研通 3245633
什么是DOI,文献DOI怎么找? 1793097
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268