Emotion-dependent language featuring depression

心理学 萧条(经济学) 心理治疗师 认知心理学 临床心理学 精神分析 宏观经济学 经济
作者
Chaoqing Yang,Xinying Zhang,Yuxuan Chen,Yunge Li,Shu Yu,Bingmei Zhao,Tao Wang,Lizhu Luo,Shan Gao
出处
期刊:Journal of Behavior Therapy and Experimental Psychiatry [Elsevier]
卷期号:81: 101883-101883 被引量:9
标识
DOI:10.1016/j.jbtep.2023.101883
摘要

Understanding language features of depression contributes to the detection of the disorder. Considering that depression is characterized by dysfunctions in emotion and individuals with depression often show emotion-dependent cognition, the present study investigated the speech features and word use of emotion-dependent narrations in patients with depression.Forty depression patients and forty controls were required to narrate self-relevant memories under five basic human emotions (i.e., sad, angry, fearful, neutral, and happy). Recorded speech and transcribed texts were analyzed.Patients with depression, as compared to non-depressed individuals, talked slower and less. They also performed differently in using negative emotion, work, family, sex, biology, health, and assent words regardless of emotion manipulation. Moreover, the use of words such as first person singular pronoun, past tense, causation, achievement, family, death, psychology, impersonal pronoun, quantifier and preposition words displayed emotion-dependent differences between groups. With the involvement of emotion, linguistic indicators associated with depressive symptoms were identified and explained 71.6% variances of depression severity.Word use was analyzed based on the dictionary which does not cover all the words spoken in the memory task, resulting in text data loss. Besides, a relatively small number of depression patients were included in the present study and therefore the results need confirmation in future research using big emotion-dependent data of speech and texts.Our findings suggest that consideration of different emotional contexts is an effective means to improve the accuracy of depression detection via the analysis of word use and speech features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
派大星完成签到 ,获得积分10
1秒前
仙峰水龙发布了新的文献求助10
1秒前
杨廷友发布了新的文献求助10
2秒前
2秒前
科研通AI5应助史杜旦腾采纳,获得10
2秒前
今后应助QIQ采纳,获得10
2秒前
h_hellow完成签到,获得积分10
2秒前
小海发布了新的文献求助10
3秒前
悦耳如彤完成签到,获得积分10
3秒前
不想晚睡给不想晚睡的求助进行了留言
4秒前
6秒前
kuku上岸给kuku上岸的求助进行了留言
6秒前
Sean完成签到,获得积分10
6秒前
冷酷丹翠发布了新的文献求助10
7秒前
悦耳如彤发布了新的文献求助10
7秒前
bkagyin应助早早采纳,获得10
7秒前
lym完成签到,获得积分10
8秒前
酷波er应助辛菜头采纳,获得30
8秒前
9秒前
TTDD完成签到 ,获得积分10
10秒前
10秒前
小闲发布了新的文献求助10
10秒前
12秒前
七七七七完成签到 ,获得积分10
12秒前
TITANIUMJ发布了新的文献求助10
14秒前
Ava应助wada酱采纳,获得10
15秒前
NexusExplorer应助不安冷之采纳,获得10
15秒前
16秒前
kangbushui关注了科研通微信公众号
16秒前
罗亚亚发布了新的文献求助10
17秒前
可研小冲发布了新的文献求助10
17秒前
中中完成签到,获得积分10
17秒前
农夫完成签到,获得积分0
18秒前
爆米花应助DeepLearning采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
Akim应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
852应助科研通管家采纳,获得10
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125798
求助须知:如何正确求助?哪些是违规求助? 4329481
关于积分的说明 13491192
捐赠科研通 4164431
什么是DOI,文献DOI怎么找? 2282927
邀请新用户注册赠送积分活动 1283954
关于科研通互助平台的介绍 1223373