Emotion-dependent language featuring depression

心理学 萧条(经济学) 心理治疗师 认知心理学 临床心理学 精神分析 宏观经济学 经济
作者
Chaoqing Yang,Xinying Zhang,Yuxuan Chen,Yunge Li,Shu Yu,Bingmei Zhao,Tao Wang,Lizhu Luo,Shan Gao
出处
期刊:Journal of Behavior Therapy and Experimental Psychiatry [Elsevier]
卷期号:81: 101883-101883 被引量:6
标识
DOI:10.1016/j.jbtep.2023.101883
摘要

Understanding language features of depression contributes to the detection of the disorder. Considering that depression is characterized by dysfunctions in emotion and individuals with depression often show emotion-dependent cognition, the present study investigated the speech features and word use of emotion-dependent narrations in patients with depression.Forty depression patients and forty controls were required to narrate self-relevant memories under five basic human emotions (i.e., sad, angry, fearful, neutral, and happy). Recorded speech and transcribed texts were analyzed.Patients with depression, as compared to non-depressed individuals, talked slower and less. They also performed differently in using negative emotion, work, family, sex, biology, health, and assent words regardless of emotion manipulation. Moreover, the use of words such as first person singular pronoun, past tense, causation, achievement, family, death, psychology, impersonal pronoun, quantifier and preposition words displayed emotion-dependent differences between groups. With the involvement of emotion, linguistic indicators associated with depressive symptoms were identified and explained 71.6% variances of depression severity.Word use was analyzed based on the dictionary which does not cover all the words spoken in the memory task, resulting in text data loss. Besides, a relatively small number of depression patients were included in the present study and therefore the results need confirmation in future research using big emotion-dependent data of speech and texts.Our findings suggest that consideration of different emotional contexts is an effective means to improve the accuracy of depression detection via the analysis of word use and speech features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然的依丝完成签到,获得积分20
刚刚
step_stone完成签到,获得积分10
1秒前
愉快彩虹发布了新的文献求助10
1秒前
cdu完成签到,获得积分10
2秒前
星辰轨迹完成签到,获得积分10
2秒前
MARS发布了新的文献求助10
2秒前
Jenny应助哈尼妞妞122采纳,获得10
2秒前
岁月轮回发布了新的文献求助10
3秒前
MADKAI发布了新的文献求助10
3秒前
高文强完成签到,获得积分10
3秒前
3秒前
习习应助坚定的诗双采纳,获得10
3秒前
3秒前
er完成签到,获得积分20
4秒前
科研通AI2S应助夯大力采纳,获得10
4秒前
4秒前
4秒前
Hover发布了新的文献求助10
4秒前
852应助无情的白桃采纳,获得10
5秒前
飘逸问薇完成签到 ,获得积分10
6秒前
SYLH应助机智的白猫采纳,获得10
7秒前
大模型应助笑点低蜜蜂采纳,获得10
7秒前
7秒前
CodeCraft应助RRRIGO采纳,获得10
7秒前
凯凯完成签到 ,获得积分10
7秒前
萌萌发布了新的文献求助10
7秒前
yy关闭了yy文献求助
7秒前
kingmin完成签到,获得积分10
7秒前
8秒前
尼克拉倒完成签到,获得积分10
8秒前
milo6666发布了新的文献求助10
9秒前
等待的乐儿完成签到,获得积分20
9秒前
9秒前
10秒前
11秒前
烟花应助醉人的仔采纳,获得10
11秒前
Relax发布了新的文献求助10
11秒前
元元完成签到,获得积分10
11秒前
liourg应助义气的妙松采纳,获得50
11秒前
星辰大海应助冷艳乐松采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759