Shape sensing of optical fiber Bragg gratings based on deep learning

计算机科学 光纤布拉格光栅 超参数 卷积神经网络 人工智能 深度学习 机器人 人工神经网络 判别式 模式识别(心理学) 光纤 电信
作者
Samaneh Manavi Roodsari,Antal Huck-Horvath,Sara Freund,Azhar Zam,Georg Rauter,Wolfgang Schade,Philippe C. Cattin
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:4 (2): 025037-025037
标识
DOI:10.1088/2632-2153/acda10
摘要

Continuum robots in robot-assisted minimally invasive surgeries provide adequate access to target anatomies that are not directly reachable through small incisions. Achieving precise and reliable motion control of such snake-like manipulators necessitates an accurate navigation system that requires no line-of-sight and is immune to electromagnetic noises. Fiber Bragg Grating (FBG) shape sensors, particularly edge-FBGs, are promising tools for this task. However, in edge-FBG sensors, the intensity ratio between Bragg wavelengths carries the strain information that can be affected by undesired bending-related phenomena, making standard characterization techniques less suitable for these sensors. We showed in our previous work that a deep learning model has the potential to extract the strain information from the full edge-FBG spectrum and accurately predict the sensor's shape. In this paper, we conduct a more thorough investigation to find a suitable architectural design with lower prediction errors. We use the Hyperband algorithm to search for optimal hyperparameters in two steps. First, we limit the search space to layer settings, where the best-performing configuration gets selected. Then, we modify the search space for tuning the training and loss calculation hyperparameters. We also analyze various data transformations on the input and output variables, as data rescaling can directly influence the model's performance. Moreover, we performed discriminative training using Siamese network architecture that employs two CNNs with identical parameters to learn similarity metrics between the spectra of similar target values. The best-performing network architecture among all evaluated configurations can predict the sensor's shape with a median tip error of 3.11 mm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yelis完成签到,获得积分10
1秒前
2秒前
灵巧千易发布了新的文献求助10
2秒前
2秒前
英姑应助寒树采纳,获得10
3秒前
hugeyoung发布了新的文献求助20
6秒前
噔噔蹬完成签到 ,获得积分10
6秒前
ozy完成签到 ,获得积分10
6秒前
8秒前
8秒前
10秒前
优美的谷完成签到,获得积分10
11秒前
未来可期发布了新的文献求助10
12秒前
Masetti1完成签到 ,获得积分10
12秒前
细心的恋风完成签到,获得积分10
12秒前
LL关闭了LL文献求助
13秒前
courage完成签到,获得积分10
15秒前
16秒前
欧阳正义发布了新的文献求助10
17秒前
隐形书白完成签到,获得积分10
17秒前
17秒前
20秒前
隐形书白发布了新的文献求助10
20秒前
赘婿应助陶醉的蜜蜂采纳,获得10
22秒前
韩凡发布了新的文献求助10
22秒前
黄晓悦发布了新的文献求助10
22秒前
Eric发布了新的文献求助20
23秒前
华仔应助拔丝香芋采纳,获得10
24秒前
LL关闭了LL文献求助
24秒前
无花果应助IVY采纳,获得10
24秒前
25秒前
田様应助薛定谔的猫采纳,获得10
26秒前
27秒前
天语黑音完成签到 ,获得积分10
27秒前
27秒前
独特的秋完成签到,获得积分10
29秒前
31秒前
yi发布了新的文献求助10
32秒前
科目三应助沉默白猫采纳,获得10
33秒前
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966919
求助须知:如何正确求助?哪些是违规求助? 3512387
关于积分的说明 11162970
捐赠科研通 3247220
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432