Shape sensing of optical fiber Bragg gratings based on deep learning

计算机科学 光纤布拉格光栅 超参数 卷积神经网络 人工智能 深度学习 机器人 人工神经网络 判别式 模式识别(心理学) 光纤 电信
作者
Samaneh Manavi Roodsari,Antal Huck-Horvath,Sara Freund,Azhar Zam,Georg Rauter,Wolfgang Schade,Philippe C. Cattin
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:4 (2): 025037-025037 被引量:6
标识
DOI:10.1088/2632-2153/acda10
摘要

Continuum robots in robot-assisted minimally invasive surgeries provide adequate access to target anatomies that are not directly reachable through small incisions. Achieving precise and reliable motion control of such snake-like manipulators necessitates an accurate navigation system that requires no line-of-sight and is immune to electromagnetic noises. Fiber Bragg Grating (FBG) shape sensors, particularly edge-FBGs, are promising tools for this task. However, in edge-FBG sensors, the intensity ratio between Bragg wavelengths carries the strain information that can be affected by undesired bending-related phenomena, making standard characterization techniques less suitable for these sensors. We showed in our previous work that a deep learning model has the potential to extract the strain information from the full edge-FBG spectrum and accurately predict the sensor's shape. In this paper, we conduct a more thorough investigation to find a suitable architectural design with lower prediction errors. We use the Hyperband algorithm to search for optimal hyperparameters in two steps. First, we limit the search space to layer settings, where the best-performing configuration gets selected. Then, we modify the search space for tuning the training and loss calculation hyperparameters. We also analyze various data transformations on the input and output variables, as data rescaling can directly influence the model's performance. Moreover, we performed discriminative training using Siamese network architecture that employs two CNNs with identical parameters to learn similarity metrics between the spectra of similar target values. The best-performing network architecture among all evaluated configurations can predict the sensor's shape with a median tip error of 3.11 mm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纳古菌完成签到,获得积分10
刚刚
脑洞疼应助LamJohn采纳,获得10
刚刚
陈梦完成签到,获得积分10
刚刚
刚刚
728发布了新的文献求助10
刚刚
黄SL完成签到 ,获得积分10
刚刚
刚刚
无花果应助结实机器猫采纳,获得10
刚刚
1秒前
1秒前
ben发布了新的文献求助10
2秒前
领导范儿应助青山采纳,获得10
2秒前
柚柚又发布了新的文献求助10
2秒前
3秒前
无极微光应助Maor采纳,获得20
3秒前
xiao完成签到,获得积分10
3秒前
3秒前
神奇宝贝发布了新的文献求助10
3秒前
bao完成签到,获得积分10
3秒前
nemohuang发布了新的文献求助10
4秒前
小森华东完成签到 ,获得积分10
4秒前
开心元霜完成签到,获得积分10
4秒前
积极红酒发布了新的文献求助10
4秒前
辛勤依凝完成签到 ,获得积分20
5秒前
Mujuas完成签到,获得积分10
5秒前
露露公主完成签到,获得积分10
5秒前
油条狗完成签到,获得积分10
5秒前
6秒前
6秒前
小凤完成签到 ,获得积分10
6秒前
你好发布了新的文献求助150
6秒前
2011509382发布了新的文献求助10
6秒前
斯可完成签到,获得积分10
6秒前
7秒前
科研通AI6应助旋转门采纳,获得30
7秒前
winnie完成签到,获得积分10
7秒前
wmt完成签到,获得积分10
7秒前
7秒前
超人发布了新的文献求助10
7秒前
小程同学完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645714
求助须知:如何正确求助?哪些是违规求助? 4769624
关于积分的说明 15031726
捐赠科研通 4804481
什么是DOI,文献DOI怎么找? 2569019
邀请新用户注册赠送积分活动 1526095
关于科研通互助平台的介绍 1485700