Shape sensing of optical fiber Bragg gratings based on deep learning

计算机科学 光纤布拉格光栅 超参数 卷积神经网络 人工智能 深度学习 机器人 人工神经网络 判别式 模式识别(心理学) 光纤 电信
作者
Samaneh Manavi Roodsari,Antal Huck-Horvath,Sara Freund,Azhar Zam,Georg Rauter,Wolfgang Schade,Philippe C. Cattin
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:4 (2): 025037-025037
标识
DOI:10.1088/2632-2153/acda10
摘要

Continuum robots in robot-assisted minimally invasive surgeries provide adequate access to target anatomies that are not directly reachable through small incisions. Achieving precise and reliable motion control of such snake-like manipulators necessitates an accurate navigation system that requires no line-of-sight and is immune to electromagnetic noises. Fiber Bragg Grating (FBG) shape sensors, particularly edge-FBGs, are promising tools for this task. However, in edge-FBG sensors, the intensity ratio between Bragg wavelengths carries the strain information that can be affected by undesired bending-related phenomena, making standard characterization techniques less suitable for these sensors. We showed in our previous work that a deep learning model has the potential to extract the strain information from the full edge-FBG spectrum and accurately predict the sensor's shape. In this paper, we conduct a more thorough investigation to find a suitable architectural design with lower prediction errors. We use the Hyperband algorithm to search for optimal hyperparameters in two steps. First, we limit the search space to layer settings, where the best-performing configuration gets selected. Then, we modify the search space for tuning the training and loss calculation hyperparameters. We also analyze various data transformations on the input and output variables, as data rescaling can directly influence the model's performance. Moreover, we performed discriminative training using Siamese network architecture that employs two CNNs with identical parameters to learn similarity metrics between the spectra of similar target values. The best-performing network architecture among all evaluated configurations can predict the sensor's shape with a median tip error of 3.11 mm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
子川发布了新的文献求助10
1秒前
大头娃娃没下巴完成签到,获得积分10
3秒前
liyuchen完成签到,获得积分10
3秒前
CipherSage应助Lxxx_7采纳,获得10
4秒前
烟花应助永远少年采纳,获得10
4秒前
meng发布了新的文献求助10
6秒前
科研通AI5应助贪吃的猴子采纳,获得10
8秒前
8秒前
可爱的彩虹完成签到,获得积分10
8秒前
小确幸完成签到,获得积分10
8秒前
彭于晏应助毛毛虫采纳,获得10
9秒前
LilyChen完成签到 ,获得积分10
9秒前
Owen应助Su采纳,获得10
9秒前
9秒前
9秒前
10秒前
11秒前
yyyy关注了科研通微信公众号
11秒前
Jane完成签到 ,获得积分10
12秒前
12秒前
12秒前
kento发布了新的文献求助30
12秒前
Akim应助balzacsun采纳,获得10
13秒前
狼来了aas发布了新的文献求助10
13秒前
14秒前
didi完成签到,获得积分10
14秒前
嘻嘻发布了新的文献求助10
16秒前
冲冲冲完成签到 ,获得积分10
16秒前
16秒前
17秒前
17秒前
17秒前
17秒前
18秒前
18秒前
19秒前
19秒前
善良身影完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824