已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Shape sensing of optical fiber Bragg gratings based on deep learning

计算机科学 光纤布拉格光栅 超参数 卷积神经网络 人工智能 深度学习 机器人 人工神经网络 判别式 模式识别(心理学) 光纤 电信
作者
Samaneh Manavi Roodsari,Antal Huck-Horvath,Sara Freund,Azhar Zam,Georg Rauter,Wolfgang Schade,Philippe C. Cattin
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:4 (2): 025037-025037
标识
DOI:10.1088/2632-2153/acda10
摘要

Continuum robots in robot-assisted minimally invasive surgeries provide adequate access to target anatomies that are not directly reachable through small incisions. Achieving precise and reliable motion control of such snake-like manipulators necessitates an accurate navigation system that requires no line-of-sight and is immune to electromagnetic noises. Fiber Bragg Grating (FBG) shape sensors, particularly edge-FBGs, are promising tools for this task. However, in edge-FBG sensors, the intensity ratio between Bragg wavelengths carries the strain information that can be affected by undesired bending-related phenomena, making standard characterization techniques less suitable for these sensors. We showed in our previous work that a deep learning model has the potential to extract the strain information from the full edge-FBG spectrum and accurately predict the sensor's shape. In this paper, we conduct a more thorough investigation to find a suitable architectural design with lower prediction errors. We use the Hyperband algorithm to search for optimal hyperparameters in two steps. First, we limit the search space to layer settings, where the best-performing configuration gets selected. Then, we modify the search space for tuning the training and loss calculation hyperparameters. We also analyze various data transformations on the input and output variables, as data rescaling can directly influence the model's performance. Moreover, we performed discriminative training using Siamese network architecture that employs two CNNs with identical parameters to learn similarity metrics between the spectra of similar target values. The best-performing network architecture among all evaluated configurations can predict the sensor's shape with a median tip error of 3.11 mm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
higgs完成签到,获得积分10
1秒前
酷波er应助默默采纳,获得10
1秒前
1秒前
玉米大西瓜完成签到 ,获得积分10
4秒前
52cc000应助兆辉采纳,获得20
6秒前
一只特立独行的流浪猪完成签到,获得积分10
7秒前
8秒前
优质演绎了我的青春完成签到 ,获得积分10
9秒前
11秒前
13秒前
小小发布了新的文献求助10
14秒前
香蕉觅云应助七只狐狸采纳,获得10
14秒前
小王完成签到 ,获得积分10
14秒前
UU完成签到 ,获得积分10
15秒前
互助遵法尚德应助新语丝采纳,获得10
15秒前
方方公主发布了新的文献求助10
17秒前
Wang97完成签到,获得积分10
17秒前
17秒前
18秒前
俭朴夜雪发布了新的文献求助10
19秒前
科研通AI2S应助林青伟采纳,获得10
19秒前
Ava应助陈半喆采纳,获得10
20秒前
默默发布了新的文献求助10
21秒前
Jasper应助zhy采纳,获得10
21秒前
JamesPei应助粥粥粥粥粥采纳,获得10
22秒前
herogyus发布了新的文献求助10
22秒前
万岁完成签到,获得积分10
23秒前
qiao完成签到 ,获得积分10
24秒前
默默完成签到,获得积分10
26秒前
26秒前
无花果应助zkf采纳,获得10
26秒前
刘皮皮皮皮皮完成签到,获得积分10
27秒前
27秒前
33秒前
小小发布了新的文献求助10
33秒前
36秒前
不忘初心完成签到,获得积分10
37秒前
黑大帅完成签到,获得积分10
39秒前
发嗲的发卡完成签到,获得积分10
43秒前
47秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150394
求助须知:如何正确求助?哪些是违规求助? 2801510
关于积分的说明 7845179
捐赠科研通 2459074
什么是DOI,文献DOI怎么找? 1308905
科研通“疑难数据库(出版商)”最低求助积分说明 628583
版权声明 601727