Shape sensing of optical fiber Bragg gratings based on deep learning

计算机科学 光纤布拉格光栅 超参数 卷积神经网络 人工智能 深度学习 机器人 人工神经网络 判别式 模式识别(心理学) 光纤 电信
作者
Samaneh Manavi Roodsari,Antal Huck-Horvath,Sara Freund,Azhar Zam,Georg Rauter,Wolfgang Schade,Philippe C. Cattin
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:4 (2): 025037-025037 被引量:6
标识
DOI:10.1088/2632-2153/acda10
摘要

Continuum robots in robot-assisted minimally invasive surgeries provide adequate access to target anatomies that are not directly reachable through small incisions. Achieving precise and reliable motion control of such snake-like manipulators necessitates an accurate navigation system that requires no line-of-sight and is immune to electromagnetic noises. Fiber Bragg Grating (FBG) shape sensors, particularly edge-FBGs, are promising tools for this task. However, in edge-FBG sensors, the intensity ratio between Bragg wavelengths carries the strain information that can be affected by undesired bending-related phenomena, making standard characterization techniques less suitable for these sensors. We showed in our previous work that a deep learning model has the potential to extract the strain information from the full edge-FBG spectrum and accurately predict the sensor's shape. In this paper, we conduct a more thorough investigation to find a suitable architectural design with lower prediction errors. We use the Hyperband algorithm to search for optimal hyperparameters in two steps. First, we limit the search space to layer settings, where the best-performing configuration gets selected. Then, we modify the search space for tuning the training and loss calculation hyperparameters. We also analyze various data transformations on the input and output variables, as data rescaling can directly influence the model's performance. Moreover, we performed discriminative training using Siamese network architecture that employs two CNNs with identical parameters to learn similarity metrics between the spectra of similar target values. The best-performing network architecture among all evaluated configurations can predict the sensor's shape with a median tip error of 3.11 mm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助科研通管家采纳,获得10
刚刚
Criminology34应助科研通管家采纳,获得10
1秒前
Frank应助科研通管家采纳,获得10
1秒前
1秒前
烟花应助科研通管家采纳,获得10
1秒前
泽松应助科研通管家采纳,获得10
1秒前
1秒前
大个应助科研通管家采纳,获得50
1秒前
量子星尘发布了新的文献求助10
1秒前
小二郎应助Narcissus采纳,获得10
1秒前
寒冷的小熊猫完成签到,获得积分10
2秒前
3秒前
华仔应助苗苗会喵喵采纳,获得10
4秒前
6秒前
wayne完成签到,获得积分10
8秒前
zcydbttj2011完成签到 ,获得积分10
12秒前
limo完成签到 ,获得积分10
12秒前
ying完成签到,获得积分10
14秒前
析木完成签到,获得积分10
14秒前
15秒前
olivia完成签到,获得积分10
16秒前
无止完成签到,获得积分10
17秒前
千里毅完成签到,获得积分10
17秒前
科研通AI6应助keyan采纳,获得10
17秒前
量子星尘发布了新的文献求助10
18秒前
dddd发布了新的文献求助10
19秒前
19秒前
20秒前
云止发布了新的文献求助10
20秒前
SciGPT应助不知采纳,获得10
20秒前
李德胜完成签到,获得积分10
21秒前
娜娜发布了新的文献求助10
21秒前
24秒前
24秒前
li完成签到,获得积分10
25秒前
小满发布了新的文献求助30
25秒前
量子星尘发布了新的文献求助10
25秒前
26秒前
27秒前
28秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060